Introducing the fractional-order Darwinian PSO
Main Author: | |
---|---|
Publication Date: | 2012 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.22/3782 |
Summary: | One of the most well-known bio-inspired algorithms used in optimization problems is the particle swarm optimization (PSO), which basically consists on a machinelearning technique loosely inspired by birds flocking in search of food. More specifically, it consists of a number of particles that collectively move on the search space in search of the global optimum. The Darwinian particle swarm optimization (DPSO) is an evolutionary algorithm that extends the PSO using natural selection, or survival of the fittest, to enhance the ability to escape from local optima. This paper firstly presents a survey on PSO algorithms mainly focusing on the DPSO. Afterward, a method for controlling the convergence rate of the DPSO using fractional calculus (FC) concepts is proposed. The fractional-order optimization algorithm, denoted as FO-DPSO, is tested using several well-known functions, and the relationship between the fractional-order velocity and the convergence of the algorithm is observed. Moreover, experimental results show that the FO-DPSO significantly outperforms the previously presented FO-PSO. |
id |
RCAP_6f49f1b04d5b004d4609fd878568bc2c |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/3782 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Introducing the fractional-order Darwinian PSOFractional calculusDPSOEvolutionary algorithmOne of the most well-known bio-inspired algorithms used in optimization problems is the particle swarm optimization (PSO), which basically consists on a machinelearning technique loosely inspired by birds flocking in search of food. More specifically, it consists of a number of particles that collectively move on the search space in search of the global optimum. The Darwinian particle swarm optimization (DPSO) is an evolutionary algorithm that extends the PSO using natural selection, or survival of the fittest, to enhance the ability to escape from local optima. This paper firstly presents a survey on PSO algorithms mainly focusing on the DPSO. Afterward, a method for controlling the convergence rate of the DPSO using fractional calculus (FC) concepts is proposed. The fractional-order optimization algorithm, denoted as FO-DPSO, is tested using several well-known functions, and the relationship between the fractional-order velocity and the convergence of the algorithm is observed. Moreover, experimental results show that the FO-DPSO significantly outperforms the previously presented FO-PSO.SpringerREPOSITÓRIO P.PORTOCouceiro, Micael S.Rocha, Rui P.Ferreira, Nuno M. F.Machado, J. A. Tenreiro2014-02-07T11:48:20Z20122012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/3782eng1863-17031863-171110.1007/s11760-012-0316-2info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-02T03:01:05Zoai:recipp.ipp.pt:10400.22/3782Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:34:33.243163Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Introducing the fractional-order Darwinian PSO |
title |
Introducing the fractional-order Darwinian PSO |
spellingShingle |
Introducing the fractional-order Darwinian PSO Couceiro, Micael S. Fractional calculus DPSO Evolutionary algorithm |
title_short |
Introducing the fractional-order Darwinian PSO |
title_full |
Introducing the fractional-order Darwinian PSO |
title_fullStr |
Introducing the fractional-order Darwinian PSO |
title_full_unstemmed |
Introducing the fractional-order Darwinian PSO |
title_sort |
Introducing the fractional-order Darwinian PSO |
author |
Couceiro, Micael S. |
author_facet |
Couceiro, Micael S. Rocha, Rui P. Ferreira, Nuno M. F. Machado, J. A. Tenreiro |
author_role |
author |
author2 |
Rocha, Rui P. Ferreira, Nuno M. F. Machado, J. A. Tenreiro |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
REPOSITÓRIO P.PORTO |
dc.contributor.author.fl_str_mv |
Couceiro, Micael S. Rocha, Rui P. Ferreira, Nuno M. F. Machado, J. A. Tenreiro |
dc.subject.por.fl_str_mv |
Fractional calculus DPSO Evolutionary algorithm |
topic |
Fractional calculus DPSO Evolutionary algorithm |
description |
One of the most well-known bio-inspired algorithms used in optimization problems is the particle swarm optimization (PSO), which basically consists on a machinelearning technique loosely inspired by birds flocking in search of food. More specifically, it consists of a number of particles that collectively move on the search space in search of the global optimum. The Darwinian particle swarm optimization (DPSO) is an evolutionary algorithm that extends the PSO using natural selection, or survival of the fittest, to enhance the ability to escape from local optima. This paper firstly presents a survey on PSO algorithms mainly focusing on the DPSO. Afterward, a method for controlling the convergence rate of the DPSO using fractional calculus (FC) concepts is proposed. The fractional-order optimization algorithm, denoted as FO-DPSO, is tested using several well-known functions, and the relationship between the fractional-order velocity and the convergence of the algorithm is observed. Moreover, experimental results show that the FO-DPSO significantly outperforms the previously presented FO-PSO. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 2012-01-01T00:00:00Z 2014-02-07T11:48:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/3782 |
url |
http://hdl.handle.net/10400.22/3782 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1863-1703 1863-1711 10.1007/s11760-012-0316-2 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833600599870930944 |