Intracellular poly-P assessment by DAPI staining and image analysis

Detalhes bibliográficos
Autor(a) principal: Amaral, A. L.
Data de Publicação: 2013
Outros Autores: Mesquita, D. P., Leal, C., Carvalheira, Mónica, Oehmen, Adrian, Reis, Maria A. M., Ferreira, Eugénio C.
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: https://hdl.handle.net/1822/28507
Resumo: In wastewater treatment, enhanced biological phosphorus removal (EBPR) is considered a well-established process to remove phosphate (P). EBPR is based on the activity of polyphosphate-accumulating organisms (PAOs) able to take up and store large amounts of P as intracellular (poly-P) granules. However, monitoring poly-P in mixed cultures is usually performed by a laborious and time consuming off-line chemical analysis. Thus, there is a clear need to develop new techniques to rapidly monitor these processes, such as image analysis coupled to sample staining and microscopy inspection. A lab-scale sequencing batch reactor (SBR) was fed with synthetic wastewater containing acetate and propionate as main carbon sources and an orthophosphate solution was added. A COD/P ratio of 10 mg COD mg P-PO4-1 was used to provide selective advantages to PAOs. The SBR was operated with a cycle time of 6 h: 120 min anaerobic including 5 min feed, 180 min aerobic and 60 min wasting/settling. Biomass samples were collected at the end of the aerobic stage. Bulk P concentration was determined by segmented flow analysis and total P concentration was similarly measured following acid digestion at 100oC. Intracellular poly-P concentration was determined by subtracting the bulk P from the total P. Intracellular poly-P granules were observed in epifluorescence microscopy using DAPI staining with a 25 ìg mL-1 DAPI solution. A long pass filter was used with an excitation bandpass of 365-370 nm and emission cut off at 421 nm. A specially developed program in Matlab was used for image analysis. A total of 41 samples were collected. Two thirds were fed as training data to the partial least squares (PLS) model and the remaining used for validation. Both absolute (in mg poly-P / L) and relative (in mg poly-P / g MLSS) intracellular poly-P concentrations were studied. This procedure was found to predict, at some extent, the relative intracellular poly-P concentration (real poly-P = 0.971 x predicted poly-P, R2 of 0.744). Regarding the absolute intracellular poly-P concentration, a total of 3 samples needed to be discarded in order to obtain a similar result (real poly-P = 1.005 x predicted poly-P, R2 of 0.731).
id RCAP_6f326b61d8bfff11e51d20b598ac596e
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/28507
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Intracellular poly-P assessment by DAPI staining and image analysisIn wastewater treatment, enhanced biological phosphorus removal (EBPR) is considered a well-established process to remove phosphate (P). EBPR is based on the activity of polyphosphate-accumulating organisms (PAOs) able to take up and store large amounts of P as intracellular (poly-P) granules. However, monitoring poly-P in mixed cultures is usually performed by a laborious and time consuming off-line chemical analysis. Thus, there is a clear need to develop new techniques to rapidly monitor these processes, such as image analysis coupled to sample staining and microscopy inspection. A lab-scale sequencing batch reactor (SBR) was fed with synthetic wastewater containing acetate and propionate as main carbon sources and an orthophosphate solution was added. A COD/P ratio of 10 mg COD mg P-PO4-1 was used to provide selective advantages to PAOs. The SBR was operated with a cycle time of 6 h: 120 min anaerobic including 5 min feed, 180 min aerobic and 60 min wasting/settling. Biomass samples were collected at the end of the aerobic stage. Bulk P concentration was determined by segmented flow analysis and total P concentration was similarly measured following acid digestion at 100oC. Intracellular poly-P concentration was determined by subtracting the bulk P from the total P. Intracellular poly-P granules were observed in epifluorescence microscopy using DAPI staining with a 25 ìg mL-1 DAPI solution. A long pass filter was used with an excitation bandpass of 365-370 nm and emission cut off at 421 nm. A specially developed program in Matlab was used for image analysis. A total of 41 samples were collected. Two thirds were fed as training data to the partial least squares (PLS) model and the remaining used for validation. Both absolute (in mg poly-P / L) and relative (in mg poly-P / g MLSS) intracellular poly-P concentrations were studied. This procedure was found to predict, at some extent, the relative intracellular poly-P concentration (real poly-P = 0.971 x predicted poly-P, R2 of 0.744). Regarding the absolute intracellular poly-P concentration, a total of 3 samples needed to be discarded in order to obtain a similar result (real poly-P = 1.005 x predicted poly-P, R2 of 0.731).Universidade do MinhoAmaral, A. L.Mesquita, D. P.Leal, C.Carvalheira, MónicaOehmen, AdrianReis, Maria A. M.Ferreira, Eugénio C.2013-062013-06-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/28507enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:03:36Zoai:repositorium.sdum.uminho.pt:1822/28507Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:06:41.550797Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Intracellular poly-P assessment by DAPI staining and image analysis
title Intracellular poly-P assessment by DAPI staining and image analysis
spellingShingle Intracellular poly-P assessment by DAPI staining and image analysis
Amaral, A. L.
title_short Intracellular poly-P assessment by DAPI staining and image analysis
title_full Intracellular poly-P assessment by DAPI staining and image analysis
title_fullStr Intracellular poly-P assessment by DAPI staining and image analysis
title_full_unstemmed Intracellular poly-P assessment by DAPI staining and image analysis
title_sort Intracellular poly-P assessment by DAPI staining and image analysis
author Amaral, A. L.
author_facet Amaral, A. L.
Mesquita, D. P.
Leal, C.
Carvalheira, Mónica
Oehmen, Adrian
Reis, Maria A. M.
Ferreira, Eugénio C.
author_role author
author2 Mesquita, D. P.
Leal, C.
Carvalheira, Mónica
Oehmen, Adrian
Reis, Maria A. M.
Ferreira, Eugénio C.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Amaral, A. L.
Mesquita, D. P.
Leal, C.
Carvalheira, Mónica
Oehmen, Adrian
Reis, Maria A. M.
Ferreira, Eugénio C.
description In wastewater treatment, enhanced biological phosphorus removal (EBPR) is considered a well-established process to remove phosphate (P). EBPR is based on the activity of polyphosphate-accumulating organisms (PAOs) able to take up and store large amounts of P as intracellular (poly-P) granules. However, monitoring poly-P in mixed cultures is usually performed by a laborious and time consuming off-line chemical analysis. Thus, there is a clear need to develop new techniques to rapidly monitor these processes, such as image analysis coupled to sample staining and microscopy inspection. A lab-scale sequencing batch reactor (SBR) was fed with synthetic wastewater containing acetate and propionate as main carbon sources and an orthophosphate solution was added. A COD/P ratio of 10 mg COD mg P-PO4-1 was used to provide selective advantages to PAOs. The SBR was operated with a cycle time of 6 h: 120 min anaerobic including 5 min feed, 180 min aerobic and 60 min wasting/settling. Biomass samples were collected at the end of the aerobic stage. Bulk P concentration was determined by segmented flow analysis and total P concentration was similarly measured following acid digestion at 100oC. Intracellular poly-P concentration was determined by subtracting the bulk P from the total P. Intracellular poly-P granules were observed in epifluorescence microscopy using DAPI staining with a 25 ìg mL-1 DAPI solution. A long pass filter was used with an excitation bandpass of 365-370 nm and emission cut off at 421 nm. A specially developed program in Matlab was used for image analysis. A total of 41 samples were collected. Two thirds were fed as training data to the partial least squares (PLS) model and the remaining used for validation. Both absolute (in mg poly-P / L) and relative (in mg poly-P / g MLSS) intracellular poly-P concentrations were studied. This procedure was found to predict, at some extent, the relative intracellular poly-P concentration (real poly-P = 0.971 x predicted poly-P, R2 of 0.744). Regarding the absolute intracellular poly-P concentration, a total of 3 samples needed to be discarded in order to obtain a similar result (real poly-P = 1.005 x predicted poly-P, R2 of 0.731).
publishDate 2013
dc.date.none.fl_str_mv 2013-06
2013-06-01T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/28507
url https://hdl.handle.net/1822/28507
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595107839836160