Evaluation of image registration performance and study of classification algorithm on histopathological images
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2018 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10451/36322 |
Resumo: | Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, em 2018 |
| id |
RCAP_6da4ea8ff1a77649c9e3e539ec732245 |
|---|---|
| oai_identifier_str |
oai:repositorio.ulisboa.pt:10451/36322 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Evaluation of image registration performance and study of classification algorithm on histopathological imagesPatologia digitalHistopatologiaRegisto de imagemClassificação de imagemAnálise de imagemTeses de mestrado - 2018Domínio/Área Científica::Engenharia e Tecnologia::Engenharia MédicaTese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, em 2018The project described in this thesis was developed in the Roche Pharma Research and Early Development (pRED) department in Penzberg, which is focused on development of personalized health care strategies. The primary goal of the study is to explore computational tools used in Digital Pathology, more specifically on image registration and classification. Digital Pathology refers to animage-based environment that enables the conversion of glass slides into digital images, and also the management and interpretation of it, involving an enormous amount of data to be handled. The image analysis tasks are fundamental since they allow the identification and classification of different types of structures on tissue samples. Staining techniques as Hematoxylin and Eosin (H&E) and Immunohistochemistr (IHC) techniques are used, allowing the extraction of relevant information for the study of pathological processes. Image registration tools to transfer the annotations from one slide to other are important and routinely used in image analysis processes. Image classification is also a key task to identify and distinguish different type of structures in the tissue. The first part of this project investigates the feasibility of an automated method for image registration assessment whereas the second part studies the influence of classifiers, features and training set changes in the classification performance. With this we aim to gather information for further improvements on the process of image analysis. After applied the registration algorithm, a distance based method was developed to evaluate its performance. Distances between each point on target and source annotations were calculated and summed up in the median value. The results of automatic annotations were compared with the manual, in order to ascertain if they behave the same way and so, if the automatic approach can be used for performance evaluation. The assumption that the closest points between two annotations are the correspondent tissue points, makes the results to not give valid information when the registration is not good. As the comparison is done between tissue outline, even when the two annotations are misaligned, there are still close points between the two, even though they do not correspond to the same tissue parts. This approach is then not reliable to use for performance assessment. Regarding image classification, an algorithm for vessels detection is used and three different settings are tested in order to identify the influence on classification performance: classifiers, features and training set. For the classifiers no significant differences were identified. It was also verified that increasing the number of features does not necessarily increase the classification performance. With regard to the training set, for one of the ground truth provided, a good improvement was verified when balancing the data set. However, compared with information provided by a different pathologist, the results were not improved with the balancing. This can also be due to the under sampling done for balancing, which might have discarded useful samples. Although this study may not provide sufficient information to draw general conclusions, it is a starting point for future studies that may improve what was done so far.Matela, Nuno Miguel de Pinto Lobo e,1978-Grimm, OliverRepositório da Universidade de LisboaLuzio, Jessica Monteiro2019-01-09T19:07:37Z201820182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10451/36322TID:202184684enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-17T14:02:00Zoai:repositorio.ulisboa.pt:10451/36322Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T03:01:00.553257Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Evaluation of image registration performance and study of classification algorithm on histopathological images |
| title |
Evaluation of image registration performance and study of classification algorithm on histopathological images |
| spellingShingle |
Evaluation of image registration performance and study of classification algorithm on histopathological images Luzio, Jessica Monteiro Patologia digital Histopatologia Registo de imagem Classificação de imagem Análise de imagem Teses de mestrado - 2018 Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica |
| title_short |
Evaluation of image registration performance and study of classification algorithm on histopathological images |
| title_full |
Evaluation of image registration performance and study of classification algorithm on histopathological images |
| title_fullStr |
Evaluation of image registration performance and study of classification algorithm on histopathological images |
| title_full_unstemmed |
Evaluation of image registration performance and study of classification algorithm on histopathological images |
| title_sort |
Evaluation of image registration performance and study of classification algorithm on histopathological images |
| author |
Luzio, Jessica Monteiro |
| author_facet |
Luzio, Jessica Monteiro |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Matela, Nuno Miguel de Pinto Lobo e,1978- Grimm, Oliver Repositório da Universidade de Lisboa |
| dc.contributor.author.fl_str_mv |
Luzio, Jessica Monteiro |
| dc.subject.por.fl_str_mv |
Patologia digital Histopatologia Registo de imagem Classificação de imagem Análise de imagem Teses de mestrado - 2018 Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica |
| topic |
Patologia digital Histopatologia Registo de imagem Classificação de imagem Análise de imagem Teses de mestrado - 2018 Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica |
| description |
Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, em 2018 |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018 2018 2018-01-01T00:00:00Z 2019-01-09T19:07:37Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/36322 TID:202184684 |
| url |
http://hdl.handle.net/10451/36322 |
| identifier_str_mv |
TID:202184684 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833601562583236608 |