Imbalanced learning in land cover classification
Main Author: | |
---|---|
Publication Date: | 2019 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/91747 |
Summary: | Douzas, G., Bacao, F., Fonseca, J., & Khudinyan, M. (2019). Imbalanced learning in land cover classification: Improving minority classes' prediction accuracy using the geometric SMOTE algorithm. Remote Sensing, 11(24), [3040]. https://doi.org/10.3390/rs11243040 |
id |
RCAP_6a26e8239fd365d914fa1ea82fdc2cb7 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/91747 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Imbalanced learning in land cover classificationImproving minority classes' prediction accuracy using the geometric SMOTE algorithmClass imbalanceGeometric-SMOTEImbalanced learningLULC classificationOversamplingEarth and Planetary Sciences(all)SDG 15 - Life on LandDouzas, G., Bacao, F., Fonseca, J., & Khudinyan, M. (2019). Imbalanced learning in land cover classification: Improving minority classes' prediction accuracy using the geometric SMOTE algorithm. Remote Sensing, 11(24), [3040]. https://doi.org/10.3390/rs11243040The automatic production of land use/land cover maps continues to be a challenging problem, with important impacts on the ability to promote sustainability and good resource management. The ability to build robust automatic classifiers and produce accurate maps can have a significant impact on the way we manage and optimize natural resources. The difficulty in achieving these results comes from many different factors, such as data quality and uncertainty. In this paper, we address the imbalanced learning problem, a common and difficult conundrum in remote sensing that affects the quality of classification results, by proposing Geometric-SMOTE, a novel oversampling method, as a tool for addressing the imbalanced learning problem in remote sensing. Geometric-SMOTE is a sophisticated oversampling algorithm which increases the quality of the instances generated in previous methods, such as the synthetic minority oversampling technique. The performance of Geometric- SMOTE, in the LUCAS (Land Use/Cover Area Frame Survey) dataset, is compared to other oversamplers using a variety of classifiers. The results show that Geometric-SMOTE significantly outperforms all the other oversamplers and improves the robustness of the classifiers. These results indicate that, when using imbalanced datasets, remote sensing researchers should consider the use of these new generation oversamplers to increase the quality of the classification results.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNDouzas, GeorgiosBacao, FernandoFonseca, JoaoKhudinyan, Manvel2020-01-24T23:37:26Z2019-12-012019-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/91747eng2072-4292PURE: 16503950https://doi.org/10.3390/rs11243040info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:43:07Zoai:run.unl.pt:10362/91747Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:14:34.544007Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Imbalanced learning in land cover classification Improving minority classes' prediction accuracy using the geometric SMOTE algorithm |
title |
Imbalanced learning in land cover classification |
spellingShingle |
Imbalanced learning in land cover classification Douzas, Georgios Class imbalance Geometric-SMOTE Imbalanced learning LULC classification Oversampling Earth and Planetary Sciences(all) SDG 15 - Life on Land |
title_short |
Imbalanced learning in land cover classification |
title_full |
Imbalanced learning in land cover classification |
title_fullStr |
Imbalanced learning in land cover classification |
title_full_unstemmed |
Imbalanced learning in land cover classification |
title_sort |
Imbalanced learning in land cover classification |
author |
Douzas, Georgios |
author_facet |
Douzas, Georgios Bacao, Fernando Fonseca, Joao Khudinyan, Manvel |
author_role |
author |
author2 |
Bacao, Fernando Fonseca, Joao Khudinyan, Manvel |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Douzas, Georgios Bacao, Fernando Fonseca, Joao Khudinyan, Manvel |
dc.subject.por.fl_str_mv |
Class imbalance Geometric-SMOTE Imbalanced learning LULC classification Oversampling Earth and Planetary Sciences(all) SDG 15 - Life on Land |
topic |
Class imbalance Geometric-SMOTE Imbalanced learning LULC classification Oversampling Earth and Planetary Sciences(all) SDG 15 - Life on Land |
description |
Douzas, G., Bacao, F., Fonseca, J., & Khudinyan, M. (2019). Imbalanced learning in land cover classification: Improving minority classes' prediction accuracy using the geometric SMOTE algorithm. Remote Sensing, 11(24), [3040]. https://doi.org/10.3390/rs11243040 |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-01 2019-12-01T00:00:00Z 2020-01-24T23:37:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/91747 |
url |
http://hdl.handle.net/10362/91747 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2072-4292 PURE: 16503950 https://doi.org/10.3390/rs11243040 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596545093599232 |