Disentangling responses to natural stress and human impact gradients in river ecosystems across Europe
Main Author: | |
---|---|
Publication Date: | 2021 |
Other Authors: | , , , , , , , |
Format: | Article |
Language: | por |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10174/31392 https://doi.org/10.1111/1365-2664.14072 |
Summary: | Rivers are dynamic ecosystems in which both human impacts and climate-driven drying events are increasingly common. These anthropogenic and natural stress-ors interact to influence the biodiversity and functioning of river ecosystems. Disentangling ecological responses to these interacting stressors is necessary to guide management actions that support ecosystems adapting to global change. We analysed the independent and interactive effects of human impacts and natu-ral drying on aquatic invertebrate communities—a key biotic group used to assess the health of European freshwaters. We calculated biological response metrics representing communities from 406 rivers in eight European countries: taxonomic richness, functional richness and redundancy, and biomonitoring indices that in-dicate ecological status. We analysed metrics based on the whole community and on a group of taxa with traits promoting resistance and/or resilience (‘high RR’) to drying. We also examined how responses vary across Europe in relation to climatic aridity. Most community metrics decreased independently in response to impacts and drying. A richness-independent biomonitoring index (the average score per taxon; ASPT) showed particular potential for use in biomonitoring, and should be consid-ered alongside new metrics representing high RR diversity, to promote accurate assessment of ecological status. High RR taxonomic richness responded only to impacts, not drying. However, these predictors explained little variance in richness and other high RR metrics, potentially due to low taxonomic richness. Metric responsiveness could thus be enhanced by developing region-specific high RR groups comprising sufficient taxa with sufficiently variable impact sensitivities to indicate ecological status.5. Synthesis and applications. Metrics are needed to assess the ecological status of dy-namic river ecosystems—including those that sometimes dry and thus to identify priority sites requiring action to tackle the causes of environmental degradation. Our results inform recommendations guiding the development of such metrics. We propose concurrent use of richness-independent ‘average score per taxon’ indices and metrics that characterize the richness of resistant and resilient taxa. We observed interactions between aridity, impacts and drying, highlighting that these new metrics should be region specific, river type specific and adaptable, promoting their ability to inform management actions that protect biodiversity in river ecosystems responding to climate change |
id |
RCAP_68f04b3a174c061eb92383c69b19e82e |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/31392 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Disentangling responses to natural stress and human impact gradients in river ecosystems across Europebioassessmenbiomonitoringflow intermittenceintermittent river,macroinvertebratemultiple stressorsresistance and resiliencetemporary streamsRivers are dynamic ecosystems in which both human impacts and climate-driven drying events are increasingly common. These anthropogenic and natural stress-ors interact to influence the biodiversity and functioning of river ecosystems. Disentangling ecological responses to these interacting stressors is necessary to guide management actions that support ecosystems adapting to global change. We analysed the independent and interactive effects of human impacts and natu-ral drying on aquatic invertebrate communities—a key biotic group used to assess the health of European freshwaters. We calculated biological response metrics representing communities from 406 rivers in eight European countries: taxonomic richness, functional richness and redundancy, and biomonitoring indices that in-dicate ecological status. We analysed metrics based on the whole community and on a group of taxa with traits promoting resistance and/or resilience (‘high RR’) to drying. We also examined how responses vary across Europe in relation to climatic aridity. Most community metrics decreased independently in response to impacts and drying. A richness-independent biomonitoring index (the average score per taxon; ASPT) showed particular potential for use in biomonitoring, and should be consid-ered alongside new metrics representing high RR diversity, to promote accurate assessment of ecological status. High RR taxonomic richness responded only to impacts, not drying. However, these predictors explained little variance in richness and other high RR metrics, potentially due to low taxonomic richness. Metric responsiveness could thus be enhanced by developing region-specific high RR groups comprising sufficient taxa with sufficiently variable impact sensitivities to indicate ecological status.5. Synthesis and applications. Metrics are needed to assess the ecological status of dy-namic river ecosystems—including those that sometimes dry and thus to identify priority sites requiring action to tackle the causes of environmental degradation. Our results inform recommendations guiding the development of such metrics. We propose concurrent use of richness-independent ‘average score per taxon’ indices and metrics that characterize the richness of resistant and resilient taxa. We observed interactions between aridity, impacts and drying, highlighting that these new metrics should be region specific, river type specific and adaptable, promoting their ability to inform management actions that protect biodiversity in river ecosystems responding to climate changeJ Appl Ecol.2022-03-22T11:20:48Z2022-03-222021-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/31392http://hdl.handle.net/10174/31392https://doi.org/10.1111/1365-2664.14072por1. Stubbington Rachel; Sarremejane Romain; Laini Alex; Cid Núria; Csabai Zoltan; England Judy; Munné Antoni; Aspin Tom; Bonada Núria; Bruno-Collados Daniel; Cauvy-Fraunie Sophie; Chadd Richard; Dienstl Claudia; Fortuño Pau; Graf Wolfram; Gutiérrez-Cánovas Cayetano; House Andy; Karouzas Ioannis; Kazila Eleana; Millan Andres; Morais Manuela; Paril Petr; Pickwell Alex; Polášek Marek; Sánchez-Fernández David; Tziortzis Iakovos ; Walker-Holden Emma; White James; Varbiro Gabor; Voreadou Catherina; Datry Thibault, 2022 Disentangling responses to natural stress and human impact gradients in river ecosystems across Europe. J Appl Ecol., 59: 537–548.wileyonlinelibrary.com/journal/jperachel.stubbington@ntu.ac.ukndndndndndndndnd221Stubbington, RachelSarremejane, RomainLaini, AlexCid, NuriaCsabai, ZoltanEngland, JudyMunné, AntoniAspin, Tomet al.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-01-03T19:31:18Zoai:dspace.uevora.pt:10174/31392Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T12:26:17.690219Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Disentangling responses to natural stress and human impact gradients in river ecosystems across Europe |
title |
Disentangling responses to natural stress and human impact gradients in river ecosystems across Europe |
spellingShingle |
Disentangling responses to natural stress and human impact gradients in river ecosystems across Europe Stubbington, Rachel bioassessmen biomonitoring flow intermittence intermittent river, macroinvertebrate multiple stressors resistance and resilience temporary streams |
title_short |
Disentangling responses to natural stress and human impact gradients in river ecosystems across Europe |
title_full |
Disentangling responses to natural stress and human impact gradients in river ecosystems across Europe |
title_fullStr |
Disentangling responses to natural stress and human impact gradients in river ecosystems across Europe |
title_full_unstemmed |
Disentangling responses to natural stress and human impact gradients in river ecosystems across Europe |
title_sort |
Disentangling responses to natural stress and human impact gradients in river ecosystems across Europe |
author |
Stubbington, Rachel |
author_facet |
Stubbington, Rachel Sarremejane, Romain Laini, Alex Cid, Nuria Csabai, Zoltan England, Judy Munné, Antoni Aspin, Tom et al. |
author_role |
author |
author2 |
Sarremejane, Romain Laini, Alex Cid, Nuria Csabai, Zoltan England, Judy Munné, Antoni Aspin, Tom et al. |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Stubbington, Rachel Sarremejane, Romain Laini, Alex Cid, Nuria Csabai, Zoltan England, Judy Munné, Antoni Aspin, Tom et al. |
dc.subject.por.fl_str_mv |
bioassessmen biomonitoring flow intermittence intermittent river, macroinvertebrate multiple stressors resistance and resilience temporary streams |
topic |
bioassessmen biomonitoring flow intermittence intermittent river, macroinvertebrate multiple stressors resistance and resilience temporary streams |
description |
Rivers are dynamic ecosystems in which both human impacts and climate-driven drying events are increasingly common. These anthropogenic and natural stress-ors interact to influence the biodiversity and functioning of river ecosystems. Disentangling ecological responses to these interacting stressors is necessary to guide management actions that support ecosystems adapting to global change. We analysed the independent and interactive effects of human impacts and natu-ral drying on aquatic invertebrate communities—a key biotic group used to assess the health of European freshwaters. We calculated biological response metrics representing communities from 406 rivers in eight European countries: taxonomic richness, functional richness and redundancy, and biomonitoring indices that in-dicate ecological status. We analysed metrics based on the whole community and on a group of taxa with traits promoting resistance and/or resilience (‘high RR’) to drying. We also examined how responses vary across Europe in relation to climatic aridity. Most community metrics decreased independently in response to impacts and drying. A richness-independent biomonitoring index (the average score per taxon; ASPT) showed particular potential for use in biomonitoring, and should be consid-ered alongside new metrics representing high RR diversity, to promote accurate assessment of ecological status. High RR taxonomic richness responded only to impacts, not drying. However, these predictors explained little variance in richness and other high RR metrics, potentially due to low taxonomic richness. Metric responsiveness could thus be enhanced by developing region-specific high RR groups comprising sufficient taxa with sufficiently variable impact sensitivities to indicate ecological status.5. Synthesis and applications. Metrics are needed to assess the ecological status of dy-namic river ecosystems—including those that sometimes dry and thus to identify priority sites requiring action to tackle the causes of environmental degradation. Our results inform recommendations guiding the development of such metrics. We propose concurrent use of richness-independent ‘average score per taxon’ indices and metrics that characterize the richness of resistant and resilient taxa. We observed interactions between aridity, impacts and drying, highlighting that these new metrics should be region specific, river type specific and adaptable, promoting their ability to inform management actions that protect biodiversity in river ecosystems responding to climate change |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-01T00:00:00Z 2022-03-22T11:20:48Z 2022-03-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/31392 http://hdl.handle.net/10174/31392 https://doi.org/10.1111/1365-2664.14072 |
url |
http://hdl.handle.net/10174/31392 https://doi.org/10.1111/1365-2664.14072 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
1. Stubbington Rachel; Sarremejane Romain; Laini Alex; Cid Núria; Csabai Zoltan; England Judy; Munné Antoni; Aspin Tom; Bonada Núria; Bruno-Collados Daniel; Cauvy-Fraunie Sophie; Chadd Richard; Dienstl Claudia; Fortuño Pau; Graf Wolfram; Gutiérrez-Cánovas Cayetano; House Andy; Karouzas Ioannis; Kazila Eleana; Millan Andres; Morais Manuela; Paril Petr; Pickwell Alex; Polášek Marek; Sánchez-Fernández David; Tziortzis Iakovos ; Walker-Holden Emma; White James; Varbiro Gabor; Voreadou Catherina; Datry Thibault, 2022 Disentangling responses to natural stress and human impact gradients in river ecosystems across Europe. J Appl Ecol., 59: 537–548. wileyonlinelibrary.com/journal/jpe rachel.stubbington@ntu.ac.uk nd nd nd nd nd nd nd nd 221 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
J Appl Ecol. |
publisher.none.fl_str_mv |
J Appl Ecol. |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833592818452398080 |