On the application of generic summarization algorithms to music
Main Author: | |
---|---|
Publication Date: | 2015 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10071/9338 |
Summary: | Several generic summarization algorithms were developed in the past and successfully applied in fields such as text and speech summarization. In this paper, we review and apply these algorithms to music. To evaluate their performance, we adopt an extrinsic approach: we compare a Fado genre classifier's performance using truncated contiguous clips against the summaries extracted with those algorithms on two different datasets. We show that Maximal Marginal Relevance (MMR), LexRank, and Latent Semantic Analysis (LSA) all improve classification performance in both datasets used for testing. |
id |
RCAP_675fe98f6a8393533ee76f3d08e233dc |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/9338 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
On the application of generic summarization algorithms to musicAutomatic music summarizationGeneric summarization algorithmsSeveral generic summarization algorithms were developed in the past and successfully applied in fields such as text and speech summarization. In this paper, we review and apply these algorithms to music. To evaluate their performance, we adopt an extrinsic approach: we compare a Fado genre classifier's performance using truncated contiguous clips against the summaries extracted with those algorithms on two different datasets. We show that Maximal Marginal Relevance (MMR), LexRank, and Latent Semantic Analysis (LSA) all improve classification performance in both datasets used for testing.IEEE2015-07-17T13:58:12Z2015-01-01T00:00:00Z20152019-05-03T17:15:18Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/9338eng1070-990810.1109/LSP.2014.2347582Raposo, F.Ribeiro, R.de Matos, D. M.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:24:50Zoai:repositorio.iscte-iul.pt:10071/9338Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:22:56.556902Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
On the application of generic summarization algorithms to music |
title |
On the application of generic summarization algorithms to music |
spellingShingle |
On the application of generic summarization algorithms to music Raposo, F. Automatic music summarization Generic summarization algorithms |
title_short |
On the application of generic summarization algorithms to music |
title_full |
On the application of generic summarization algorithms to music |
title_fullStr |
On the application of generic summarization algorithms to music |
title_full_unstemmed |
On the application of generic summarization algorithms to music |
title_sort |
On the application of generic summarization algorithms to music |
author |
Raposo, F. |
author_facet |
Raposo, F. Ribeiro, R. de Matos, D. M. |
author_role |
author |
author2 |
Ribeiro, R. de Matos, D. M. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Raposo, F. Ribeiro, R. de Matos, D. M. |
dc.subject.por.fl_str_mv |
Automatic music summarization Generic summarization algorithms |
topic |
Automatic music summarization Generic summarization algorithms |
description |
Several generic summarization algorithms were developed in the past and successfully applied in fields such as text and speech summarization. In this paper, we review and apply these algorithms to music. To evaluate their performance, we adopt an extrinsic approach: we compare a Fado genre classifier's performance using truncated contiguous clips against the summaries extracted with those algorithms on two different datasets. We show that Maximal Marginal Relevance (MMR), LexRank, and Latent Semantic Analysis (LSA) all improve classification performance in both datasets used for testing. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07-17T13:58:12Z 2015-01-01T00:00:00Z 2015 2019-05-03T17:15:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/9338 |
url |
http://hdl.handle.net/10071/9338 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1070-9908 10.1109/LSP.2014.2347582 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597371553939456 |