Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2019 |
| Outros Autores: | |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/158370 |
Resumo: | Douzas, G., & Bacao, F. (2019). Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE. Information Sciences, 501, 118-135. https://doi.org/10.1016/j.ins.2019.06.007 |
| id |
RCAP_674fd1816cfc13aeffedb07bca47ee32 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/158370 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTEClassificationData generationImbalanced learningOversamplingSMOTESupervised learningSoftwareControl and Systems EngineeringTheoretical Computer ScienceComputer Science ApplicationsInformation Systems and ManagementArtificial IntelligenceDouzas, G., & Bacao, F. (2019). Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE. Information Sciences, 501, 118-135. https://doi.org/10.1016/j.ins.2019.06.007Classification of imbalanced datasets is a challenging task for standard algorithms. Although many methods exist to address this problem in different ways, generating artificial data for the minority class is a more general approach compared to algorithmic modifications. SMOTE algorithm, as well as any other oversampling method based on the SMOTE mechanism, generates synthetic samples along line segments that join minority class instances. In this paper we propose Geometric SMOTE (G-SMOTE) as a enhancement of the SMOTE data generation mechanism. G-SMOTE generates synthetic samples in a geometric region of the input space, around each selected minority instance. While in the basic configuration this region is a hyper-sphere, G-SMOTE allows its deformation to a hyper-spheroid. The performance of G-SMOTE is compared against SMOTE as well as baseline methods. We present empirical results that show a significant improvement in the quality of the generated data when G-SMOTE is used as an oversampling algorithm. An implementation of G-SMOTE is made available in the Python programming language.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNDouzas, GeorgiosBacao, Fernando2023-09-27T22:18:14Z2019-10-012019-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article18application/pdfhttp://hdl.handle.net/10362/158370eng0020-0255PURE: 13784337https://doi.org/10.1016/j.ins.2019.06.007info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:14:42Zoai:run.unl.pt:10362/158370Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:45:14.715561Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE |
| title |
Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE |
| spellingShingle |
Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE Douzas, Georgios Classification Data generation Imbalanced learning Oversampling SMOTE Supervised learning Software Control and Systems Engineering Theoretical Computer Science Computer Science Applications Information Systems and Management Artificial Intelligence |
| title_short |
Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE |
| title_full |
Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE |
| title_fullStr |
Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE |
| title_full_unstemmed |
Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE |
| title_sort |
Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE |
| author |
Douzas, Georgios |
| author_facet |
Douzas, Georgios Bacao, Fernando |
| author_role |
author |
| author2 |
Bacao, Fernando |
| author2_role |
author |
| dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
| dc.contributor.author.fl_str_mv |
Douzas, Georgios Bacao, Fernando |
| dc.subject.por.fl_str_mv |
Classification Data generation Imbalanced learning Oversampling SMOTE Supervised learning Software Control and Systems Engineering Theoretical Computer Science Computer Science Applications Information Systems and Management Artificial Intelligence |
| topic |
Classification Data generation Imbalanced learning Oversampling SMOTE Supervised learning Software Control and Systems Engineering Theoretical Computer Science Computer Science Applications Information Systems and Management Artificial Intelligence |
| description |
Douzas, G., & Bacao, F. (2019). Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE. Information Sciences, 501, 118-135. https://doi.org/10.1016/j.ins.2019.06.007 |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-10-01 2019-10-01T00:00:00Z 2023-09-27T22:18:14Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/158370 |
| url |
http://hdl.handle.net/10362/158370 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
0020-0255 PURE: 13784337 https://doi.org/10.1016/j.ins.2019.06.007 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
18 application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596938162798592 |