Image Processing Toolbox

Detalhes bibliográficos
Autor(a) principal: Castro, Diogo Filipe Miranda Ferreira
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10362/167930
Resumo: Huge amounts of information regarding image processing and computer vision exist in the form of articles, books and courses. Most of them are too dense to understand or out of reach for most people. Nowadays most applications and scientific papers require certain advanced knowledge to understand its contents and make use of them. This leads for the need to recap the principles of image processing and computer vision, creating a path to the more complex and relevant concepts of today. In this thesis a structured document is developed explaining the principles and most common algorithms and methodologies, alongside with practical examples for each of them, attempting to solve this issue. In addition, this thesis’ work includes the creation of a new open-source library dedicated to understand and learn how each algorithm and method is implemented and what happens to each image pixel during manipulation. The results present in this work relate to the comparison of the implemented methods through three metrics, execution time, image quality and features extracted. It is discussed the performance of these metrics for each method. The basics of image processing and computer vision can be learned from this work, as well as some algorithms and concepts from the image processing and computer vision communities.
id RCAP_65c21da1ad8afb9f5df3d099eed12fd1
oai_identifier_str oai:run.unl.pt:10362/167930
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Image Processing ToolboxImage ProcessingComputer VisionDigital ImageDigital FilterImage Processing LibraryPythonDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaHuge amounts of information regarding image processing and computer vision exist in the form of articles, books and courses. Most of them are too dense to understand or out of reach for most people. Nowadays most applications and scientific papers require certain advanced knowledge to understand its contents and make use of them. This leads for the need to recap the principles of image processing and computer vision, creating a path to the more complex and relevant concepts of today. In this thesis a structured document is developed explaining the principles and most common algorithms and methodologies, alongside with practical examples for each of them, attempting to solve this issue. In addition, this thesis’ work includes the creation of a new open-source library dedicated to understand and learn how each algorithm and method is implemented and what happens to each image pixel during manipulation. The results present in this work relate to the comparison of the implemented methods through three metrics, execution time, image quality and features extracted. It is discussed the performance of these metrics for each method. The basics of image processing and computer vision can be learned from this work, as well as some algorithms and concepts from the image processing and computer vision communities.Grandes quantidades de informação relacionadas com processamento de imagem e visão computacional existem em formato de artigos, livros e cursos. Grande parte deles são de- masiado densos para entender ou estão inacessíveis para a maior parte das pessoas. Hoje em dia a maioria das aplicações e artigos científicos é necessário conhecimento avançado para perceber os seus conteúdos e conseguir fazer uso deles. Isto leva à necessidade de recapitular os princípios de processamento de imagem e visão computacional, criando um caminho para conceitos mais complexos e relevantes atualmente. Neste trabalho é desenvolvido um documento a explicar os princípios, e algoritmos e metodologias mais comuns, juntamente com exemplos práticos, tentando resolver este problema. Adicional- mente também é desenvolvido uma biblioteca open-source dedicada ao entendimento e aprendizagem de cada algoritmo e método implementado, e o que ocorre a cada pixel durante a manipulação da imagem. Os resultados apresentados neste trabalho relatam as diferenças dos metodos implementados referentes a três metricas, tempo de execução, qualidade de imagem e extração de características. É discutido o desempenho de cada método para cada metrica. Os principios de processamento de imagem e visão compu- tacional podem ser aprendidos através deste trabalho, bem como alguns algoritmos e conceitos provenientes das comunidades de processamento de imagem e visão computa- cional.Fonseca, JoséRUNCastro, Diogo Filipe Miranda Ferreira2024-05-28T13:16:54Z2022-022022-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/167930enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-06-10T01:48:57Zoai:run.unl.pt:10362/167930Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:54:57.334588Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Image Processing Toolbox
title Image Processing Toolbox
spellingShingle Image Processing Toolbox
Castro, Diogo Filipe Miranda Ferreira
Image Processing
Computer Vision
Digital Image
Digital Filter
Image Processing Library
Python
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Image Processing Toolbox
title_full Image Processing Toolbox
title_fullStr Image Processing Toolbox
title_full_unstemmed Image Processing Toolbox
title_sort Image Processing Toolbox
author Castro, Diogo Filipe Miranda Ferreira
author_facet Castro, Diogo Filipe Miranda Ferreira
author_role author
dc.contributor.none.fl_str_mv Fonseca, José
RUN
dc.contributor.author.fl_str_mv Castro, Diogo Filipe Miranda Ferreira
dc.subject.por.fl_str_mv Image Processing
Computer Vision
Digital Image
Digital Filter
Image Processing Library
Python
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Image Processing
Computer Vision
Digital Image
Digital Filter
Image Processing Library
Python
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Huge amounts of information regarding image processing and computer vision exist in the form of articles, books and courses. Most of them are too dense to understand or out of reach for most people. Nowadays most applications and scientific papers require certain advanced knowledge to understand its contents and make use of them. This leads for the need to recap the principles of image processing and computer vision, creating a path to the more complex and relevant concepts of today. In this thesis a structured document is developed explaining the principles and most common algorithms and methodologies, alongside with practical examples for each of them, attempting to solve this issue. In addition, this thesis’ work includes the creation of a new open-source library dedicated to understand and learn how each algorithm and method is implemented and what happens to each image pixel during manipulation. The results present in this work relate to the comparison of the implemented methods through three metrics, execution time, image quality and features extracted. It is discussed the performance of these metrics for each method. The basics of image processing and computer vision can be learned from this work, as well as some algorithms and concepts from the image processing and computer vision communities.
publishDate 2022
dc.date.none.fl_str_mv 2022-02
2022-02-01T00:00:00Z
2024-05-28T13:16:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/167930
url http://hdl.handle.net/10362/167930
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597055736479744