Image Processing Toolbox
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2022 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/167930 |
Resumo: | Huge amounts of information regarding image processing and computer vision exist in the form of articles, books and courses. Most of them are too dense to understand or out of reach for most people. Nowadays most applications and scientific papers require certain advanced knowledge to understand its contents and make use of them. This leads for the need to recap the principles of image processing and computer vision, creating a path to the more complex and relevant concepts of today. In this thesis a structured document is developed explaining the principles and most common algorithms and methodologies, alongside with practical examples for each of them, attempting to solve this issue. In addition, this thesis’ work includes the creation of a new open-source library dedicated to understand and learn how each algorithm and method is implemented and what happens to each image pixel during manipulation. The results present in this work relate to the comparison of the implemented methods through three metrics, execution time, image quality and features extracted. It is discussed the performance of these metrics for each method. The basics of image processing and computer vision can be learned from this work, as well as some algorithms and concepts from the image processing and computer vision communities. |
| id |
RCAP_65c21da1ad8afb9f5df3d099eed12fd1 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/167930 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Image Processing ToolboxImage ProcessingComputer VisionDigital ImageDigital FilterImage Processing LibraryPythonDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaHuge amounts of information regarding image processing and computer vision exist in the form of articles, books and courses. Most of them are too dense to understand or out of reach for most people. Nowadays most applications and scientific papers require certain advanced knowledge to understand its contents and make use of them. This leads for the need to recap the principles of image processing and computer vision, creating a path to the more complex and relevant concepts of today. In this thesis a structured document is developed explaining the principles and most common algorithms and methodologies, alongside with practical examples for each of them, attempting to solve this issue. In addition, this thesis’ work includes the creation of a new open-source library dedicated to understand and learn how each algorithm and method is implemented and what happens to each image pixel during manipulation. The results present in this work relate to the comparison of the implemented methods through three metrics, execution time, image quality and features extracted. It is discussed the performance of these metrics for each method. The basics of image processing and computer vision can be learned from this work, as well as some algorithms and concepts from the image processing and computer vision communities.Grandes quantidades de informação relacionadas com processamento de imagem e visão computacional existem em formato de artigos, livros e cursos. Grande parte deles são de- masiado densos para entender ou estão inacessíveis para a maior parte das pessoas. Hoje em dia a maioria das aplicações e artigos científicos é necessário conhecimento avançado para perceber os seus conteúdos e conseguir fazer uso deles. Isto leva à necessidade de recapitular os princípios de processamento de imagem e visão computacional, criando um caminho para conceitos mais complexos e relevantes atualmente. Neste trabalho é desenvolvido um documento a explicar os princípios, e algoritmos e metodologias mais comuns, juntamente com exemplos práticos, tentando resolver este problema. Adicional- mente também é desenvolvido uma biblioteca open-source dedicada ao entendimento e aprendizagem de cada algoritmo e método implementado, e o que ocorre a cada pixel durante a manipulação da imagem. Os resultados apresentados neste trabalho relatam as diferenças dos metodos implementados referentes a três metricas, tempo de execução, qualidade de imagem e extração de características. É discutido o desempenho de cada método para cada metrica. Os principios de processamento de imagem e visão compu- tacional podem ser aprendidos através deste trabalho, bem como alguns algoritmos e conceitos provenientes das comunidades de processamento de imagem e visão computa- cional.Fonseca, JoséRUNCastro, Diogo Filipe Miranda Ferreira2024-05-28T13:16:54Z2022-022022-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/167930enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-06-10T01:48:57Zoai:run.unl.pt:10362/167930Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:54:57.334588Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Image Processing Toolbox |
| title |
Image Processing Toolbox |
| spellingShingle |
Image Processing Toolbox Castro, Diogo Filipe Miranda Ferreira Image Processing Computer Vision Digital Image Digital Filter Image Processing Library Python Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
| title_short |
Image Processing Toolbox |
| title_full |
Image Processing Toolbox |
| title_fullStr |
Image Processing Toolbox |
| title_full_unstemmed |
Image Processing Toolbox |
| title_sort |
Image Processing Toolbox |
| author |
Castro, Diogo Filipe Miranda Ferreira |
| author_facet |
Castro, Diogo Filipe Miranda Ferreira |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Fonseca, José RUN |
| dc.contributor.author.fl_str_mv |
Castro, Diogo Filipe Miranda Ferreira |
| dc.subject.por.fl_str_mv |
Image Processing Computer Vision Digital Image Digital Filter Image Processing Library Python Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
| topic |
Image Processing Computer Vision Digital Image Digital Filter Image Processing Library Python Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
| description |
Huge amounts of information regarding image processing and computer vision exist in the form of articles, books and courses. Most of them are too dense to understand or out of reach for most people. Nowadays most applications and scientific papers require certain advanced knowledge to understand its contents and make use of them. This leads for the need to recap the principles of image processing and computer vision, creating a path to the more complex and relevant concepts of today. In this thesis a structured document is developed explaining the principles and most common algorithms and methodologies, alongside with practical examples for each of them, attempting to solve this issue. In addition, this thesis’ work includes the creation of a new open-source library dedicated to understand and learn how each algorithm and method is implemented and what happens to each image pixel during manipulation. The results present in this work relate to the comparison of the implemented methods through three metrics, execution time, image quality and features extracted. It is discussed the performance of these metrics for each method. The basics of image processing and computer vision can be learned from this work, as well as some algorithms and concepts from the image processing and computer vision communities. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-02 2022-02-01T00:00:00Z 2024-05-28T13:16:54Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/167930 |
| url |
http://hdl.handle.net/10362/167930 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597055736479744 |