Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative

Bibliographic Details
Main Author: Pooseh, S.
Publication Date: 2012
Other Authors: Almeida, R., Torres, D. F. M.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/11653
Summary: We obtain series expansion formulas for the Hadamard fractional integral and fractional derivative of a smooth function. When considering finite sums only, an upper bound for the error is given. Numerical simulations show the efficiency of the approximation method.
id RCAP_659fb5309c9afa3157285e42b2d309d0
oai_identifier_str oai:ria.ua.pt:10773/11653
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivativeFractional CalculusHadamard fractional integralsHadamard fractional derivativesNumerical approximationsWe obtain series expansion formulas for the Hadamard fractional integral and fractional derivative of a smooth function. When considering finite sums only, an upper bound for the error is given. Numerical simulations show the efficiency of the approximation method.Taylor & Francis2014-01-10T16:05:10Z2012-02-01T00:00:00Z2012-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfapplication/pdfhttp://hdl.handle.net/10773/11653eng0163-056310.1080/01630563.2011.647197Pooseh, S.Almeida, R.Torres, D. F. M.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:45:29Zoai:ria.ua.pt:10773/11653Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:45:48.475332Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative
title Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative
spellingShingle Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative
Pooseh, S.
Fractional Calculus
Hadamard fractional integrals
Hadamard fractional derivatives
Numerical approximations
title_short Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative
title_full Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative
title_fullStr Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative
title_full_unstemmed Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative
title_sort Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative
author Pooseh, S.
author_facet Pooseh, S.
Almeida, R.
Torres, D. F. M.
author_role author
author2 Almeida, R.
Torres, D. F. M.
author2_role author
author
dc.contributor.author.fl_str_mv Pooseh, S.
Almeida, R.
Torres, D. F. M.
dc.subject.por.fl_str_mv Fractional Calculus
Hadamard fractional integrals
Hadamard fractional derivatives
Numerical approximations
topic Fractional Calculus
Hadamard fractional integrals
Hadamard fractional derivatives
Numerical approximations
description We obtain series expansion formulas for the Hadamard fractional integral and fractional derivative of a smooth function. When considering finite sums only, an upper bound for the error is given. Numerical simulations show the efficiency of the approximation method.
publishDate 2012
dc.date.none.fl_str_mv 2012-02-01T00:00:00Z
2012-02
2014-01-10T16:05:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/11653
url http://hdl.handle.net/10773/11653
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0163-0563
10.1080/01630563.2011.647197
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594042500251648