A fundamental differential system of 3-dimensional Riemannian geometry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/10174/24574 https://doi.org/10.1016/j.bulsci.2018.01.001 |
Resumo: | We briefly recall a fundamental exterior differential system of Riemannian geometry and apply it to the case of three dimensions. Here we find new global tensors and intrinsic invariants of oriented Riemannian 3-manifolds. In particular, we develop the study of ∇Ric. The exterior differential system leads to a remarkable Weingarten type equation for immersed surfaces in hyperbolic 3-space. A new independent proof for low dimensions of the structural equations gives new insight on the intrinsic exterior differential system. |
id |
RCAP_645d48830604395cc6fc7ea5ed8e8c7c |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/24574 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
A fundamental differential system of 3-dimensional Riemannian geometrydifferential systemRiemannian manifold3-manifoldsWe briefly recall a fundamental exterior differential system of Riemannian geometry and apply it to the case of three dimensions. Here we find new global tensors and intrinsic invariants of oriented Riemannian 3-manifolds. In particular, we develop the study of ∇Ric. The exterior differential system leads to a remarkable Weingarten type equation for immersed surfaces in hyperbolic 3-space. A new independent proof for low dimensions of the structural equations gives new insight on the intrinsic exterior differential system.Elsevier2019-02-12T12:33:55Z2019-02-122018-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/24574https://doi.org/10.1016/j.bulsci.2018.01.001http://hdl.handle.net/10174/24574https://doi.org/10.1016/j.bulsci.2018.01.001engR. Albuquerque, A fundamental differential system of 3-dimensional Riemannian geometry, Bull. Sci. math. 143 (2018) 82-107.http://arxiv.org/abs/1112.3213rpa@uevora.pt337Albuquerque, Ruiinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-01-03T19:17:25Zoai:dspace.uevora.pt:10174/24574Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T12:17:34.817330Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
A fundamental differential system of 3-dimensional Riemannian geometry |
title |
A fundamental differential system of 3-dimensional Riemannian geometry |
spellingShingle |
A fundamental differential system of 3-dimensional Riemannian geometry Albuquerque, Rui differential system Riemannian manifold 3-manifolds |
title_short |
A fundamental differential system of 3-dimensional Riemannian geometry |
title_full |
A fundamental differential system of 3-dimensional Riemannian geometry |
title_fullStr |
A fundamental differential system of 3-dimensional Riemannian geometry |
title_full_unstemmed |
A fundamental differential system of 3-dimensional Riemannian geometry |
title_sort |
A fundamental differential system of 3-dimensional Riemannian geometry |
author |
Albuquerque, Rui |
author_facet |
Albuquerque, Rui |
author_role |
author |
dc.contributor.author.fl_str_mv |
Albuquerque, Rui |
dc.subject.por.fl_str_mv |
differential system Riemannian manifold 3-manifolds |
topic |
differential system Riemannian manifold 3-manifolds |
description |
We briefly recall a fundamental exterior differential system of Riemannian geometry and apply it to the case of three dimensions. Here we find new global tensors and intrinsic invariants of oriented Riemannian 3-manifolds. In particular, we develop the study of ∇Ric. The exterior differential system leads to a remarkable Weingarten type equation for immersed surfaces in hyperbolic 3-space. A new independent proof for low dimensions of the structural equations gives new insight on the intrinsic exterior differential system. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03-01T00:00:00Z 2019-02-12T12:33:55Z 2019-02-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/24574 https://doi.org/10.1016/j.bulsci.2018.01.001 http://hdl.handle.net/10174/24574 https://doi.org/10.1016/j.bulsci.2018.01.001 |
url |
http://hdl.handle.net/10174/24574 https://doi.org/10.1016/j.bulsci.2018.01.001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
R. Albuquerque, A fundamental differential system of 3-dimensional Riemannian geometry, Bull. Sci. math. 143 (2018) 82-107. http://arxiv.org/abs/1112.3213 rpa@uevora.pt 337 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833592701318070272 |