DEEP LEARNING PARA RECONHECIMENTO DE FONEMAS CONCATENADOS

Bibliographic Details
Main Author: Costa, Pedro Silva Varela
Publication Date: 2024
Format: Master thesis
Language: por
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.8/10214
Summary: Esta dissertação teve como objetivo criar um modelo capaz de classificar fonemas em português, utilizando técnicas avançadas de Deep Learning. Um fonema é a menor unidade de som na linguagem, e a sua correta identificação é essencial para a compreensão da fala. Ao focar na classificação de fonemas, em vez de palavras inteiras, este projeto busca superar desafios relacionados a variações de sotaques ou deficiências na fala, permitindo um reconhecimento mais preciso e inclusivo. Foram exploradas várias técnicas de Deep Learning, que foram aplicadas na análise de Mel-Espectrogramas — representações visuais das frequências dos sons ao longo do tempo. Esses espectrogramas serviram como base para o treino do modelo, permitindo que ele classificasse fonemas com boa precisão em testes de validação. No entanto, o desempenho do modelo foi inferior ao esperado quando testado em novos dados e amostras de áudio, destacando a necessidade de melhorias na sua robustez e capacidade de generalização para diferentes contextos linguísticos.
id RCAP_63df35be15368bbf09b412fc84370cf9
oai_identifier_str oai:iconline.ipleiria.pt:10400.8/10214
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling DEEP LEARNING PARA RECONHECIMENTO DE FONEMAS CONCATENADOSDeep LearningFonemasMel-EspectrogramasReconhecimento de falaEsta dissertação teve como objetivo criar um modelo capaz de classificar fonemas em português, utilizando técnicas avançadas de Deep Learning. Um fonema é a menor unidade de som na linguagem, e a sua correta identificação é essencial para a compreensão da fala. Ao focar na classificação de fonemas, em vez de palavras inteiras, este projeto busca superar desafios relacionados a variações de sotaques ou deficiências na fala, permitindo um reconhecimento mais preciso e inclusivo. Foram exploradas várias técnicas de Deep Learning, que foram aplicadas na análise de Mel-Espectrogramas — representações visuais das frequências dos sons ao longo do tempo. Esses espectrogramas serviram como base para o treino do modelo, permitindo que ele classificasse fonemas com boa precisão em testes de validação. No entanto, o desempenho do modelo foi inferior ao esperado quando testado em novos dados e amostras de áudio, destacando a necessidade de melhorias na sua robustez e capacidade de generalização para diferentes contextos linguísticos.Pereira, João da SilvaRepositório IC-OnlineCosta, Pedro Silva Varela2024-10-31T10:41:01Z2024-10-252024-10-25T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.8/10214urn:tid:203714644porinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T15:16:29Zoai:iconline.ipleiria.pt:10400.8/10214Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:55:25.992077Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv DEEP LEARNING PARA RECONHECIMENTO DE FONEMAS CONCATENADOS
title DEEP LEARNING PARA RECONHECIMENTO DE FONEMAS CONCATENADOS
spellingShingle DEEP LEARNING PARA RECONHECIMENTO DE FONEMAS CONCATENADOS
Costa, Pedro Silva Varela
Deep Learning
Fonemas
Mel-Espectrogramas
Reconhecimento de fala
title_short DEEP LEARNING PARA RECONHECIMENTO DE FONEMAS CONCATENADOS
title_full DEEP LEARNING PARA RECONHECIMENTO DE FONEMAS CONCATENADOS
title_fullStr DEEP LEARNING PARA RECONHECIMENTO DE FONEMAS CONCATENADOS
title_full_unstemmed DEEP LEARNING PARA RECONHECIMENTO DE FONEMAS CONCATENADOS
title_sort DEEP LEARNING PARA RECONHECIMENTO DE FONEMAS CONCATENADOS
author Costa, Pedro Silva Varela
author_facet Costa, Pedro Silva Varela
author_role author
dc.contributor.none.fl_str_mv Pereira, João da Silva
Repositório IC-Online
dc.contributor.author.fl_str_mv Costa, Pedro Silva Varela
dc.subject.por.fl_str_mv Deep Learning
Fonemas
Mel-Espectrogramas
Reconhecimento de fala
topic Deep Learning
Fonemas
Mel-Espectrogramas
Reconhecimento de fala
description Esta dissertação teve como objetivo criar um modelo capaz de classificar fonemas em português, utilizando técnicas avançadas de Deep Learning. Um fonema é a menor unidade de som na linguagem, e a sua correta identificação é essencial para a compreensão da fala. Ao focar na classificação de fonemas, em vez de palavras inteiras, este projeto busca superar desafios relacionados a variações de sotaques ou deficiências na fala, permitindo um reconhecimento mais preciso e inclusivo. Foram exploradas várias técnicas de Deep Learning, que foram aplicadas na análise de Mel-Espectrogramas — representações visuais das frequências dos sons ao longo do tempo. Esses espectrogramas serviram como base para o treino do modelo, permitindo que ele classificasse fonemas com boa precisão em testes de validação. No entanto, o desempenho do modelo foi inferior ao esperado quando testado em novos dados e amostras de áudio, destacando a necessidade de melhorias na sua robustez e capacidade de generalização para diferentes contextos linguísticos.
publishDate 2024
dc.date.none.fl_str_mv 2024-10-31T10:41:01Z
2024-10-25
2024-10-25T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.8/10214
urn:tid:203714644
url http://hdl.handle.net/10400.8/10214
identifier_str_mv urn:tid:203714644
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598962011996160