Safety Isolating Transformer Design using HyDE-DF algorithm
| Main Author: | |
|---|---|
| Publication Date: | 2020 |
| Other Authors: | , , , |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10400.22/18058 |
Summary: | This paper presents an application of Evolutionary Computation (EC) to the benchmark of the safety isolating transformer problem. The benchmark adopts multidisciplinary optimization strategies, namely the multidisciplinary feasible (MDF) and the individual discipline feasible (IDF) formulations. The benchmark meets the requirements of engineers and scientists working with machine design problem, such as in the first part of the design process that is the choice of structure and materials. The EC methods employed in this paper are based on Evolutionary Algorithms (EAs), namely two variants of Differential Evolution (DE), two variants of Hybrid Adaptive DE (HyDE) and the Vortex Search (VS). The results showed in this paper suggest that EA methods are competitive with the classical optimization method, the sequential quadratic programming (SQP). Among the developed EAs, HyDE-DF is able to obtain better values than SQP on a significant battery of trials. |
| id |
RCAP_63c760f6c18bf05f6b401b04a8a98de8 |
|---|---|
| oai_identifier_str |
oai:recipp.ipp.pt:10400.22/18058 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Safety Isolating Transformer Design using HyDE-DF algorithmOptimizationSafetyBenchmark testingCopperConvergenceMathematical modelMagnetic coresThis paper presents an application of Evolutionary Computation (EC) to the benchmark of the safety isolating transformer problem. The benchmark adopts multidisciplinary optimization strategies, namely the multidisciplinary feasible (MDF) and the individual discipline feasible (IDF) formulations. The benchmark meets the requirements of engineers and scientists working with machine design problem, such as in the first part of the design process that is the choice of structure and materials. The EC methods employed in this paper are based on Evolutionary Algorithms (EAs), namely two variants of Differential Evolution (DE), two variants of Hybrid Adaptive DE (HyDE) and the Vortex Search (VS). The results showed in this paper suggest that EA methods are competitive with the classical optimization method, the sequential quadratic programming (SQP). Among the developed EAs, HyDE-DF is able to obtain better values than SQP on a significant battery of trials.IEEEREPOSITÓRIO P.PORTOSoares, JoãoLezama, FernandoVale, ZitaBrisset, StephaneFrancois, Bruno2021-06-17T10:25:46Z20202020-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.22/18058eng978-1-7281-6929-310.1109/CEC48606.2020.9185619info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-02T02:58:52Zoai:recipp.ipp.pt:10400.22/18058Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:31:59.760839Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Safety Isolating Transformer Design using HyDE-DF algorithm |
| title |
Safety Isolating Transformer Design using HyDE-DF algorithm |
| spellingShingle |
Safety Isolating Transformer Design using HyDE-DF algorithm Soares, João Optimization Safety Benchmark testing Copper Convergence Mathematical model Magnetic cores |
| title_short |
Safety Isolating Transformer Design using HyDE-DF algorithm |
| title_full |
Safety Isolating Transformer Design using HyDE-DF algorithm |
| title_fullStr |
Safety Isolating Transformer Design using HyDE-DF algorithm |
| title_full_unstemmed |
Safety Isolating Transformer Design using HyDE-DF algorithm |
| title_sort |
Safety Isolating Transformer Design using HyDE-DF algorithm |
| author |
Soares, João |
| author_facet |
Soares, João Lezama, Fernando Vale, Zita Brisset, Stephane Francois, Bruno |
| author_role |
author |
| author2 |
Lezama, Fernando Vale, Zita Brisset, Stephane Francois, Bruno |
| author2_role |
author author author author |
| dc.contributor.none.fl_str_mv |
REPOSITÓRIO P.PORTO |
| dc.contributor.author.fl_str_mv |
Soares, João Lezama, Fernando Vale, Zita Brisset, Stephane Francois, Bruno |
| dc.subject.por.fl_str_mv |
Optimization Safety Benchmark testing Copper Convergence Mathematical model Magnetic cores |
| topic |
Optimization Safety Benchmark testing Copper Convergence Mathematical model Magnetic cores |
| description |
This paper presents an application of Evolutionary Computation (EC) to the benchmark of the safety isolating transformer problem. The benchmark adopts multidisciplinary optimization strategies, namely the multidisciplinary feasible (MDF) and the individual discipline feasible (IDF) formulations. The benchmark meets the requirements of engineers and scientists working with machine design problem, such as in the first part of the design process that is the choice of structure and materials. The EC methods employed in this paper are based on Evolutionary Algorithms (EAs), namely two variants of Differential Evolution (DE), two variants of Hybrid Adaptive DE (HyDE) and the Vortex Search (VS). The results showed in this paper suggest that EA methods are competitive with the classical optimization method, the sequential quadratic programming (SQP). Among the developed EAs, HyDE-DF is able to obtain better values than SQP on a significant battery of trials. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020 2020-01-01T00:00:00Z 2021-06-17T10:25:46Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/18058 |
| url |
http://hdl.handle.net/10400.22/18058 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
978-1-7281-6929-3 10.1109/CEC48606.2020.9185619 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
IEEE |
| publisher.none.fl_str_mv |
IEEE |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833600579047260160 |