Exploring decoding using Machine Learning
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2022 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10773/37345 |
Resumo: | In recent years, machine learning has become one of the most rapidly expanding technologies in a variety of technological fields. In general, it allows a computer to learn from data without being expressly designed for a particular purpose. This thesis investigates the application of decoding methods inspired by machine learning to linear block codes, such as Reed-Muller (RM) codes. |
| id |
RCAP_62ac9ce12eeef3fae1b640ee24af2b3e |
|---|---|
| oai_identifier_str |
oai:ria.ua.pt:10773/37345 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Exploring decoding using Machine LearningCoding theoryMachine learningReed-MullerDecodingNeural networksReinforcement learningIn recent years, machine learning has become one of the most rapidly expanding technologies in a variety of technological fields. In general, it allows a computer to learn from data without being expressly designed for a particular purpose. This thesis investigates the application of decoding methods inspired by machine learning to linear block codes, such as Reed-Muller (RM) codes.Recentemente, o Machine Learning tornou-se uma das tecnologias em mais rápida expansão numa variedade de campos tecnológicos. Em geral, permite que um computador aprenda com os dados sem ser expressamente concebido para um fim específico. Esta dissertação investiga a aplicação de métodos de descodificação inspirados no Machine Learning a códigos de blocos lineares, tais como os códigos de Reed-Muller.2023-04-26T13:25:10Z2022-11-21T00:00:00Z2022-11-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/37345engTafoyem, Willy Kevininfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:44:45Zoai:ria.ua.pt:10773/37345Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:18:54.208187Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Exploring decoding using Machine Learning |
| title |
Exploring decoding using Machine Learning |
| spellingShingle |
Exploring decoding using Machine Learning Tafoyem, Willy Kevin Coding theory Machine learning Reed-Muller Decoding Neural networks Reinforcement learning |
| title_short |
Exploring decoding using Machine Learning |
| title_full |
Exploring decoding using Machine Learning |
| title_fullStr |
Exploring decoding using Machine Learning |
| title_full_unstemmed |
Exploring decoding using Machine Learning |
| title_sort |
Exploring decoding using Machine Learning |
| author |
Tafoyem, Willy Kevin |
| author_facet |
Tafoyem, Willy Kevin |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Tafoyem, Willy Kevin |
| dc.subject.por.fl_str_mv |
Coding theory Machine learning Reed-Muller Decoding Neural networks Reinforcement learning |
| topic |
Coding theory Machine learning Reed-Muller Decoding Neural networks Reinforcement learning |
| description |
In recent years, machine learning has become one of the most rapidly expanding technologies in a variety of technological fields. In general, it allows a computer to learn from data without being expressly designed for a particular purpose. This thesis investigates the application of decoding methods inspired by machine learning to linear block codes, such as Reed-Muller (RM) codes. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-11-21T00:00:00Z 2022-11-21 2023-04-26T13:25:10Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/37345 |
| url |
http://hdl.handle.net/10773/37345 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833594490262126592 |