A Survey on Batch Training in Genetic Programming
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Outros Autores: | |
| Tipo de documento: | Outros |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/176146 |
Resumo: | Rosenfeld, L., & Vanneschi, L. (2025). A Survey on Batch Training in Genetic Programming. Genetic Programming And Evolvable Machines, 26, 1-28. Article 2. https://doi.org/10.1007/s10710-024-09501-6 --- Open access funding provided by FCT|FCCN (b-on). This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS (https://doi.org/10.54499/UIDB/04152/2020). |
| id |
RCAP_5c87103f94d9ae3e7492814829a10001 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/176146 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
A Survey on Batch Training in Genetic ProgrammingGenetic programmingBatch trainingSampling methodsGeneralizationOverfittingSoftwareTheoretical Computer ScienceHardware and ArchitectureComputer Science ApplicationsRosenfeld, L., & Vanneschi, L. (2025). A Survey on Batch Training in Genetic Programming. Genetic Programming And Evolvable Machines, 26, 1-28. Article 2. https://doi.org/10.1007/s10710-024-09501-6 --- Open access funding provided by FCT|FCCN (b-on). This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS (https://doi.org/10.54499/UIDB/04152/2020).In Machine Learning (ML), the use of subsets of training data, referred to as batches, rather than the entire dataset, has been extensively researched to reduce computational costs, improve model efficiency, and enhance algorithm generalization. Despite extensive research, a clear definition and consensus on what constitutes batch training have yet to be reached, leading to a fragmented body of literature that could otherwise be seen as different facets of a unified methodology. To address this gap, we propose a theoretical redefinition of batch training, creating a clearer and broader overview that integrates diverse perspectives. We then apply this refined concepjavascript:void(0);t specifically to Genetic Programming (GP). Although batch training techniques have been explored in GP, the term itself is seldom used, resulting in ambiguity regarding its application in this area. This review seeks to clarify the existing literature on batch training by presenting a new and practical classification system, which we further explore within the specific context of GP. We also investigate the use of dynamic batch sizes in ML, emphasizing the relatively limited research on dynamic or adaptive batch sizes in GP compared to other ML algorithms. By bringing greater coherence to previously disjointed research efforts, we aim to foster further scientific exploration and development. Our work highlights key considerations for researchers designing batch training applications in GP and offers an in-depth discussion of future research directions, challenges, and opportunities for advancement.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNRosenfeld, LiahVanneschi, Leonardo2024-12-02T22:58:31Z2025-062025-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/other28application/pdfhttp://hdl.handle.net/10362/176146eng1389-2576PURE: 103016320https://doi.org/10.1007/s10710-024-09501-6info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-12-23T01:37:22Zoai:run.unl.pt:10362/176146Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:17:47.952159Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
A Survey on Batch Training in Genetic Programming |
| title |
A Survey on Batch Training in Genetic Programming |
| spellingShingle |
A Survey on Batch Training in Genetic Programming Rosenfeld, Liah Genetic programming Batch training Sampling methods Generalization Overfitting Software Theoretical Computer Science Hardware and Architecture Computer Science Applications |
| title_short |
A Survey on Batch Training in Genetic Programming |
| title_full |
A Survey on Batch Training in Genetic Programming |
| title_fullStr |
A Survey on Batch Training in Genetic Programming |
| title_full_unstemmed |
A Survey on Batch Training in Genetic Programming |
| title_sort |
A Survey on Batch Training in Genetic Programming |
| author |
Rosenfeld, Liah |
| author_facet |
Rosenfeld, Liah Vanneschi, Leonardo |
| author_role |
author |
| author2 |
Vanneschi, Leonardo |
| author2_role |
author |
| dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
| dc.contributor.author.fl_str_mv |
Rosenfeld, Liah Vanneschi, Leonardo |
| dc.subject.por.fl_str_mv |
Genetic programming Batch training Sampling methods Generalization Overfitting Software Theoretical Computer Science Hardware and Architecture Computer Science Applications |
| topic |
Genetic programming Batch training Sampling methods Generalization Overfitting Software Theoretical Computer Science Hardware and Architecture Computer Science Applications |
| description |
Rosenfeld, L., & Vanneschi, L. (2025). A Survey on Batch Training in Genetic Programming. Genetic Programming And Evolvable Machines, 26, 1-28. Article 2. https://doi.org/10.1007/s10710-024-09501-6 --- Open access funding provided by FCT|FCCN (b-on). This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS (https://doi.org/10.54499/UIDB/04152/2020). |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-12-02T22:58:31Z 2025-06 2025-06-01T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/other |
| format |
other |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/176146 |
| url |
http://hdl.handle.net/10362/176146 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
1389-2576 PURE: 103016320 https://doi.org/10.1007/s10710-024-09501-6 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
28 application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597998327660544 |