On the energy of singular and non singular graphs

Bibliographic Details
Main Author: Andrade, Enide
Publication Date: 2019
Other Authors: Carmona, Juan R., Poveda, Alex, Robbiano, María
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/27220
Summary: Let $G$ be a simple undirected graph with $n$ vertices, $m$ edges, adjacency matrix $A$, largest eigenvalue $\rho$ and nullity $\kappa$. The energy of $G,$ $\mathcal{E}(G)$ is the sum of its singular values. In this work lower bounds for $\mathcal{E}(G)$ in terms of the coefficient of $\mu^{\kappa}$ in the expansion of characteristic polynomial, $p(\mu)=\det{(\mu I-A)}$ are obtained. In particular one of the bounds generalizes a lower bound obtained by K. Das, S. A. Mojallal and I. Gutman in $2013$ to the case of graphs with given nullity. The bipartite case is also studied obtaining in this case, a sufficient condition to improve the spectral lower bound $2\rho.$ Considering an increasing sequence convergent to $\rho$ a convergent increasing sequence of lower bounds for the energy of $G$ is constructed.
id RCAP_5ae4fd6d128300ad1917c527dfd6e2ff
oai_identifier_str oai:ria.ua.pt:10773/27220
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling On the energy of singular and non singular graphsEnergySingular graphsNon singular graphsLet $G$ be a simple undirected graph with $n$ vertices, $m$ edges, adjacency matrix $A$, largest eigenvalue $\rho$ and nullity $\kappa$. The energy of $G,$ $\mathcal{E}(G)$ is the sum of its singular values. In this work lower bounds for $\mathcal{E}(G)$ in terms of the coefficient of $\mu^{\kappa}$ in the expansion of characteristic polynomial, $p(\mu)=\det{(\mu I-A)}$ are obtained. In particular one of the bounds generalizes a lower bound obtained by K. Das, S. A. Mojallal and I. Gutman in $2013$ to the case of graphs with given nullity. The bipartite case is also studied obtaining in this case, a sufficient condition to improve the spectral lower bound $2\rho.$ Considering an increasing sequence convergent to $\rho$ a convergent increasing sequence of lower bounds for the energy of $G$ is constructed.University of Kragujevac2019-12-19T18:52:28Z2020-01-01T00:00:00Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/27220eng0340-6253http://match.pmf.kg.ac.rs/content83n3.htmAndrade, EnideCarmona, Juan R.Poveda, AlexRobbiano, Maríainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:22:56Zoai:ria.ua.pt:10773/27220Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:06:35.017162Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv On the energy of singular and non singular graphs
title On the energy of singular and non singular graphs
spellingShingle On the energy of singular and non singular graphs
Andrade, Enide
Energy
Singular graphs
Non singular graphs
title_short On the energy of singular and non singular graphs
title_full On the energy of singular and non singular graphs
title_fullStr On the energy of singular and non singular graphs
title_full_unstemmed On the energy of singular and non singular graphs
title_sort On the energy of singular and non singular graphs
author Andrade, Enide
author_facet Andrade, Enide
Carmona, Juan R.
Poveda, Alex
Robbiano, María
author_role author
author2 Carmona, Juan R.
Poveda, Alex
Robbiano, María
author2_role author
author
author
dc.contributor.author.fl_str_mv Andrade, Enide
Carmona, Juan R.
Poveda, Alex
Robbiano, María
dc.subject.por.fl_str_mv Energy
Singular graphs
Non singular graphs
topic Energy
Singular graphs
Non singular graphs
description Let $G$ be a simple undirected graph with $n$ vertices, $m$ edges, adjacency matrix $A$, largest eigenvalue $\rho$ and nullity $\kappa$. The energy of $G,$ $\mathcal{E}(G)$ is the sum of its singular values. In this work lower bounds for $\mathcal{E}(G)$ in terms of the coefficient of $\mu^{\kappa}$ in the expansion of characteristic polynomial, $p(\mu)=\det{(\mu I-A)}$ are obtained. In particular one of the bounds generalizes a lower bound obtained by K. Das, S. A. Mojallal and I. Gutman in $2013$ to the case of graphs with given nullity. The bipartite case is also studied obtaining in this case, a sufficient condition to improve the spectral lower bound $2\rho.$ Considering an increasing sequence convergent to $\rho$ a convergent increasing sequence of lower bounds for the energy of $G$ is constructed.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-19T18:52:28Z
2020-01-01T00:00:00Z
2020-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/27220
url http://hdl.handle.net/10773/27220
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0340-6253
http://match.pmf.kg.ac.rs/content83n3.htm
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv University of Kragujevac
publisher.none.fl_str_mv University of Kragujevac
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594296709677056