Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance Study

Bibliographic Details
Main Author: Albuquerque, João
Publication Date: 2020
Other Authors: Alves, Ana C., Medeiros, Ana M., Bourbon, Mafalda, Antunes, Marília
Language: por
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.18/7720
Summary: Introduction: One ofthe greatest challenges when working with clinical datasetsisto decide howto deal withmissing values. Removing observations with any missing values priorto data analysis, a process defined aslistwise deletion, is the standard default procedure in most statistical software packages, but may lead to great loss of valuable information [1]. The use of robust imputation methods may provide accurate estimates for missing values, allowing to include these observations into the analysis. The imputation strategy to adopt depends on the amount and type of missing information, and also on the relation between variables, allying statistical expertise with clinical understanding of the data. The main purpose of this work was to compare the performance oftwo differentmethods ofimputationto overcomemissingness on dyslipidemic patients regarding statin usage.
id RCAP_59b0204ea106f1b14bab46cf47e10dfa
oai_identifier_str oai:repositorio.insa.pt:10400.18/7720
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance StudyData ImputationStatinsDyslipidemiaDoenças Cardio e Cérebro-vascularesIntroduction: One ofthe greatest challenges when working with clinical datasetsisto decide howto deal withmissing values. Removing observations with any missing values priorto data analysis, a process defined aslistwise deletion, is the standard default procedure in most statistical software packages, but may lead to great loss of valuable information [1]. The use of robust imputation methods may provide accurate estimates for missing values, allowing to include these observations into the analysis. The imputation strategy to adopt depends on the amount and type of missing information, and also on the relation between variables, allying statistical expertise with clinical understanding of the data. The main purpose of this work was to compare the performance oftwo differentmethods ofimputationto overcomemissingness on dyslipidemic patients regarding statin usage.Repositório Científico do Instituto Nacional de SaúdeAlbuquerque, JoãoAlves, Ana C.Medeiros, Ana M.Bourbon, MafaldaAntunes, Marília2021-04-30T15:21:07Z2020-102020-10-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.18/7720por10.34624/jshd.v2i2.21156info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-26T14:20:51Zoai:repositorio.insa.pt:10400.18/7720Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:35:13.327458Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance Study
title Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance Study
spellingShingle Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance Study
Albuquerque, João
Data Imputation
Statins
Dyslipidemia
Doenças Cardio e Cérebro-vasculares
title_short Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance Study
title_full Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance Study
title_fullStr Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance Study
title_full_unstemmed Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance Study
title_sort Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance Study
author Albuquerque, João
author_facet Albuquerque, João
Alves, Ana C.
Medeiros, Ana M.
Bourbon, Mafalda
Antunes, Marília
author_role author
author2 Alves, Ana C.
Medeiros, Ana M.
Bourbon, Mafalda
Antunes, Marília
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Nacional de Saúde
dc.contributor.author.fl_str_mv Albuquerque, João
Alves, Ana C.
Medeiros, Ana M.
Bourbon, Mafalda
Antunes, Marília
dc.subject.por.fl_str_mv Data Imputation
Statins
Dyslipidemia
Doenças Cardio e Cérebro-vasculares
topic Data Imputation
Statins
Dyslipidemia
Doenças Cardio e Cérebro-vasculares
description Introduction: One ofthe greatest challenges when working with clinical datasetsisto decide howto deal withmissing values. Removing observations with any missing values priorto data analysis, a process defined aslistwise deletion, is the standard default procedure in most statistical software packages, but may lead to great loss of valuable information [1]. The use of robust imputation methods may provide accurate estimates for missing values, allowing to include these observations into the analysis. The imputation strategy to adopt depends on the amount and type of missing information, and also on the relation between variables, allying statistical expertise with clinical understanding of the data. The main purpose of this work was to compare the performance oftwo differentmethods ofimputationto overcomemissingness on dyslipidemic patients regarding statin usage.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
2020-10-01T00:00:00Z
2021-04-30T15:21:07Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.18/7720
url http://hdl.handle.net/10400.18/7720
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv 10.34624/jshd.v2i2.21156
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833599335132037121