Reducing the Number of Training Cases in Genetic Programming
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2022 |
| Outros Autores: | , |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/146561 |
Resumo: | Zoppi, G., Vanneschi, L., & Giacobini, M. (2022). Reducing the Number of Training Cases in Genetic Programming. In 2022 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE. https://doi.org/10.1109/CEC55065.2022.9870327 |
| id |
RCAP_5951c891bd0f5e5cbd16537b4ac7ccaf |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/146561 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Reducing the Number of Training Cases in Genetic ProgrammingTrainingBoolean functionsGenetic programmingMachine learningEvolutionary computationData modelsBenchmark testingArtificial IntelligenceComputer Science ApplicationsComputational MathematicsControl and OptimizationZoppi, G., Vanneschi, L., & Giacobini, M. (2022). Reducing the Number of Training Cases in Genetic Programming. In 2022 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE. https://doi.org/10.1109/CEC55065.2022.9870327In the field of Machine Learning, one of the most common and discussed questions is how to choose an adequate number of data observations, in order to train our models satisfactorily. In other words, find what is the right amount of data needed to create a model, that is neither underfitted nor overfitted, but instead is able to achieve a reasonable generalization ability. The problem grows in importance when we consider Genetic Programming, where fitness evaluation is often rather slow. Therefore, finding the minimum amount of data that enables us to discover the solution to a given problem could bring significant benefits. Using the notion of entropy in a dataset, we seek to understand the information gain obtainable from each additional data point. We then look for the smallest percentage of data that corresponds to enough information to yield satisfactory results. We present, as a first step, an example derived from the state of art. Then, we question a relevant part of our procedure and introduce two case studies to experimentally validate our theoretical hypothesis.Institute of Electrical and Electronics Engineers (IEEE)Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNZoppi, GiacomoVanneschi, LeonardoGiacobini, Mario2022-12-22T22:23:39Z2022-07-182022-07-18T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion8application/pdfhttp://hdl.handle.net/10362/146561eng978-1-6654-6708-7PURE: 46476290https://doi.org/10.1109/CEC55065.2022.9870327info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:07:36Zoai:run.unl.pt:10362/146561Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:38:14.030153Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Reducing the Number of Training Cases in Genetic Programming |
| title |
Reducing the Number of Training Cases in Genetic Programming |
| spellingShingle |
Reducing the Number of Training Cases in Genetic Programming Zoppi, Giacomo Training Boolean functions Genetic programming Machine learning Evolutionary computation Data models Benchmark testing Artificial Intelligence Computer Science Applications Computational Mathematics Control and Optimization |
| title_short |
Reducing the Number of Training Cases in Genetic Programming |
| title_full |
Reducing the Number of Training Cases in Genetic Programming |
| title_fullStr |
Reducing the Number of Training Cases in Genetic Programming |
| title_full_unstemmed |
Reducing the Number of Training Cases in Genetic Programming |
| title_sort |
Reducing the Number of Training Cases in Genetic Programming |
| author |
Zoppi, Giacomo |
| author_facet |
Zoppi, Giacomo Vanneschi, Leonardo Giacobini, Mario |
| author_role |
author |
| author2 |
Vanneschi, Leonardo Giacobini, Mario |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
| dc.contributor.author.fl_str_mv |
Zoppi, Giacomo Vanneschi, Leonardo Giacobini, Mario |
| dc.subject.por.fl_str_mv |
Training Boolean functions Genetic programming Machine learning Evolutionary computation Data models Benchmark testing Artificial Intelligence Computer Science Applications Computational Mathematics Control and Optimization |
| topic |
Training Boolean functions Genetic programming Machine learning Evolutionary computation Data models Benchmark testing Artificial Intelligence Computer Science Applications Computational Mathematics Control and Optimization |
| description |
Zoppi, G., Vanneschi, L., & Giacobini, M. (2022). Reducing the Number of Training Cases in Genetic Programming. In 2022 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE. https://doi.org/10.1109/CEC55065.2022.9870327 |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-12-22T22:23:39Z 2022-07-18 2022-07-18T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/146561 |
| url |
http://hdl.handle.net/10362/146561 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
978-1-6654-6708-7 PURE: 46476290 https://doi.org/10.1109/CEC55065.2022.9870327 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
8 application/pdf |
| dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers (IEEE) |
| publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers (IEEE) |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596849350508544 |