A new exact method for linear bilevel problems with multiple objective functions at the lower level

Detalhes bibliográficos
Autor(a) principal: Alves, M. João
Data de Publicação: 2022
Outros Autores: Antunes, Carlos Henggeler
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: https://hdl.handle.net/10316/99209
https://doi.org/10.1016/j.ejor.2022.02.047
Resumo: In this paper we consider linear bilevel programming problems with multiple objective functions at the lower level. We propose a general-purpose exact method to compute the optimistic optimal solution, which is based on the search of efficient extreme solutions of an associated multiobjective linear problem with many objective functions. We also explore a heuristic procedure relying on the same principles. Although this procedure cannot ensure the global optimal solution but just a local optimum, it has shown to be quite effective in problems where the global optimum is difficult to obtain within a reasonable timeframe. A computational study is presented to evaluate the performance of the exact method and the heuristic procedure, comparing them with an exact and an approximate method proposed by other authors, using randomly generated instances. Our approach reveals interesting results in problems with few upper-level variables.
id RCAP_5787514b402d75e45e5c556b17b3fbbc
oai_identifier_str oai:estudogeral.uc.pt:10316/99209
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling A new exact method for linear bilevel problems with multiple objective functions at the lower levelMultiple objective programmingLinear bilevel optimizationSemivectorial bilevel problemMultiobjective simplex methodIn this paper we consider linear bilevel programming problems with multiple objective functions at the lower level. We propose a general-purpose exact method to compute the optimistic optimal solution, which is based on the search of efficient extreme solutions of an associated multiobjective linear problem with many objective functions. We also explore a heuristic procedure relying on the same principles. Although this procedure cannot ensure the global optimal solution but just a local optimum, it has shown to be quite effective in problems where the global optimum is difficult to obtain within a reasonable timeframe. A computational study is presented to evaluate the performance of the exact method and the heuristic procedure, comparing them with an exact and an approximate method proposed by other authors, using randomly generated instances. Our approach reveals interesting results in problems with few upper-level variables.Elsevier2022-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/99209https://hdl.handle.net/10316/99209https://doi.org/10.1016/j.ejor.2022.02.047eng0377-22171872-6860https://doi.org/10.1016/j.ejor.2022.02.047Alves, M. JoãoAntunes, Carlos Henggelerinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-25T12:06:05Zoai:estudogeral.uc.pt:10316/99209Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:48:15.772540Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv A new exact method for linear bilevel problems with multiple objective functions at the lower level
title A new exact method for linear bilevel problems with multiple objective functions at the lower level
spellingShingle A new exact method for linear bilevel problems with multiple objective functions at the lower level
Alves, M. João
Multiple objective programming
Linear bilevel optimization
Semivectorial bilevel problem
Multiobjective simplex method
title_short A new exact method for linear bilevel problems with multiple objective functions at the lower level
title_full A new exact method for linear bilevel problems with multiple objective functions at the lower level
title_fullStr A new exact method for linear bilevel problems with multiple objective functions at the lower level
title_full_unstemmed A new exact method for linear bilevel problems with multiple objective functions at the lower level
title_sort A new exact method for linear bilevel problems with multiple objective functions at the lower level
author Alves, M. João
author_facet Alves, M. João
Antunes, Carlos Henggeler
author_role author
author2 Antunes, Carlos Henggeler
author2_role author
dc.contributor.author.fl_str_mv Alves, M. João
Antunes, Carlos Henggeler
dc.subject.por.fl_str_mv Multiple objective programming
Linear bilevel optimization
Semivectorial bilevel problem
Multiobjective simplex method
topic Multiple objective programming
Linear bilevel optimization
Semivectorial bilevel problem
Multiobjective simplex method
description In this paper we consider linear bilevel programming problems with multiple objective functions at the lower level. We propose a general-purpose exact method to compute the optimistic optimal solution, which is based on the search of efficient extreme solutions of an associated multiobjective linear problem with many objective functions. We also explore a heuristic procedure relying on the same principles. Although this procedure cannot ensure the global optimal solution but just a local optimum, it has shown to be quite effective in problems where the global optimum is difficult to obtain within a reasonable timeframe. A computational study is presented to evaluate the performance of the exact method and the heuristic procedure, comparing them with an exact and an approximate method proposed by other authors, using randomly generated instances. Our approach reveals interesting results in problems with few upper-level variables.
publishDate 2022
dc.date.none.fl_str_mv 2022-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/99209
https://hdl.handle.net/10316/99209
https://doi.org/10.1016/j.ejor.2022.02.047
url https://hdl.handle.net/10316/99209
https://doi.org/10.1016/j.ejor.2022.02.047
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0377-2217
1872-6860
https://doi.org/10.1016/j.ejor.2022.02.047
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602477936607232