H1-second order convergent estimates for non Fickian models

Bibliographic Details
Main Author: Barbeiro, S.
Publication Date: 2009
Other Authors: Ferreira, J. A., Pinto, L.
Format: Other
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/11163
Summary: In this paper we study numerical methods for integro-differential initial boundary value problems that arise, naturally, in many applications such as heat conduction in materials with memory, diffusion in polymers and diffusion in porous media. We propose finite difference methods to compute approximations for the continuous solutions of such problems. For those methods we analyze the stability and study the convergence. We prove a supraconvergent estimate. As such methods can be seen as lumped mass methods, our supraconvergent result is a superconvergent result in the context of finite element methods. Numerical results illustrating the theoretical results are included.
id RCAP_53afc20e6e6d4478dfe92d01f0663b33
oai_identifier_str oai:estudogeral.uc.pt:10316/11163
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling H1-second order convergent estimates for non Fickian modelsNon Fickian modelsFinite difference methodPiecewise linear finite element methodSupraconvergenceSuperconvergenceIn this paper we study numerical methods for integro-differential initial boundary value problems that arise, naturally, in many applications such as heat conduction in materials with memory, diffusion in polymers and diffusion in porous media. We propose finite difference methods to compute approximations for the continuous solutions of such problems. For those methods we analyze the stability and study the convergence. We prove a supraconvergent estimate. As such methods can be seen as lumped mass methods, our supraconvergent result is a superconvergent result in the context of finite element methods. Numerical results illustrating the theoretical results are included.Centre for Mathematics of University of Coimbra; Project PTDC/Mat/74548/2006; Project UTAustin/MAT/0066/2008Centro de Matemática da Universidade de Coimbra2009info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://hdl.handle.net/10316/11163https://hdl.handle.net/10316/11163engPré-Publicações DMUC. 09-25 (2009)Barbeiro, S.Ferreira, J. A.Pinto, L.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2020-05-25T13:10:24Zoai:estudogeral.uc.pt:10316/11163Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:23:17.789720Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv H1-second order convergent estimates for non Fickian models
title H1-second order convergent estimates for non Fickian models
spellingShingle H1-second order convergent estimates for non Fickian models
Barbeiro, S.
Non Fickian models
Finite difference method
Piecewise linear finite element method
Supraconvergence
Superconvergence
title_short H1-second order convergent estimates for non Fickian models
title_full H1-second order convergent estimates for non Fickian models
title_fullStr H1-second order convergent estimates for non Fickian models
title_full_unstemmed H1-second order convergent estimates for non Fickian models
title_sort H1-second order convergent estimates for non Fickian models
author Barbeiro, S.
author_facet Barbeiro, S.
Ferreira, J. A.
Pinto, L.
author_role author
author2 Ferreira, J. A.
Pinto, L.
author2_role author
author
dc.contributor.author.fl_str_mv Barbeiro, S.
Ferreira, J. A.
Pinto, L.
dc.subject.por.fl_str_mv Non Fickian models
Finite difference method
Piecewise linear finite element method
Supraconvergence
Superconvergence
topic Non Fickian models
Finite difference method
Piecewise linear finite element method
Supraconvergence
Superconvergence
description In this paper we study numerical methods for integro-differential initial boundary value problems that arise, naturally, in many applications such as heat conduction in materials with memory, diffusion in polymers and diffusion in porous media. We propose finite difference methods to compute approximations for the continuous solutions of such problems. For those methods we analyze the stability and study the convergence. We prove a supraconvergent estimate. As such methods can be seen as lumped mass methods, our supraconvergent result is a superconvergent result in the context of finite element methods. Numerical results illustrating the theoretical results are included.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/other
format other
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/11163
https://hdl.handle.net/10316/11163
url https://hdl.handle.net/10316/11163
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Pré-Publicações DMUC. 09-25 (2009)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Centro de Matemática da Universidade de Coimbra
publisher.none.fl_str_mv Centro de Matemática da Universidade de Coimbra
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602338903818240