Drug biophysical profiling using lipid-based colloidal nanosystems and human serum albumin as biomimetic interfaces

Bibliographic Details
Main Author: Fernandes, Eduarda Barbosa
Publication Date: 2017
Other Authors: Real Oliveira, M. Elisabete C.D., Benfeito, S., Cagide, Fernando, Borges, F., Lúcio, M.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/49668
Summary: The development of new drugs is a highly complex and expensive process, so it is crucial that less promising compounds are rejected early in the discovery phase before progressing to more expensive phases. This scenario impels researchers to refine and speed up the drug discovery process and to seek tools to support decisions related to modifications of the drug chemical structure to improve drugs’ properties and thus increase the probability of success in the process of drug discovery. [1], [2] In the drug discovery process it should be considered that in physiological environment there will be reciprocal interactions between drugs and biological interfaces, such as cell membranes or plasma proteins, and from those interactions different pharmacokinetic profiles can be achieved. [3] Thus, it is important to develop in vitro high throughput methods to evaluate the pharmaceutical profile, consisting in measuring properties such as permeability, lipophilicity, plasma protein binding, and biophysical changes of the membranes, which in turn affect other properties, such as the bioavailability of a drug and its pharmacokinetic profile. [4] Herein, the characterization of a newly synthesized drug (MIT-3) will be based on the measurement of fundamental biophysical properties, which allow inferring about its ADMET profile (absorption, distribution, excretion and toxicity at the membrane level). For this purpose, lipid-based colloidal nanosystems of different compositions were prepared as membrane mimetic models and several biophysical techniques were applied: derivative spectroscopy; quenching of steady-state and time-resolved fluorescence; quenching of intrinsic fluorescence of human serum albumin; synchronous fluorescence; dynamic and electrophoretic light scattering, differential scanning calorimetry and small and wide angle x-ray diffraction. The application of these techniques allowed to predict that MIT-3 has an ubiquitous location at the membrane level, presenting good membrane permeability and a good distribution in the therapeutic target. However, it is also predicted bioaccumulation with distribution in non-therapeutic targets and under conditions of prolonged exposure the drug may cause membrane toxicity as concluded by the impairment of membrane biophysical properties. It is also possible to conclude that the biophysical techniques and the biomimetic models used, constitute a toolbox of strategies for the future evaluation of other drugs.
id RCAP_4c8a0556d8d548a617f5b8dcbe931ed9
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/49668
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Drug biophysical profiling using lipid-based colloidal nanosystems and human serum albumin as biomimetic interfacesNanocarriersLiposomesDrug deliveryCiências Naturais::Ciências BiológicasThe development of new drugs is a highly complex and expensive process, so it is crucial that less promising compounds are rejected early in the discovery phase before progressing to more expensive phases. This scenario impels researchers to refine and speed up the drug discovery process and to seek tools to support decisions related to modifications of the drug chemical structure to improve drugs’ properties and thus increase the probability of success in the process of drug discovery. [1], [2] In the drug discovery process it should be considered that in physiological environment there will be reciprocal interactions between drugs and biological interfaces, such as cell membranes or plasma proteins, and from those interactions different pharmacokinetic profiles can be achieved. [3] Thus, it is important to develop in vitro high throughput methods to evaluate the pharmaceutical profile, consisting in measuring properties such as permeability, lipophilicity, plasma protein binding, and biophysical changes of the membranes, which in turn affect other properties, such as the bioavailability of a drug and its pharmacokinetic profile. [4] Herein, the characterization of a newly synthesized drug (MIT-3) will be based on the measurement of fundamental biophysical properties, which allow inferring about its ADMET profile (absorption, distribution, excretion and toxicity at the membrane level). For this purpose, lipid-based colloidal nanosystems of different compositions were prepared as membrane mimetic models and several biophysical techniques were applied: derivative spectroscopy; quenching of steady-state and time-resolved fluorescence; quenching of intrinsic fluorescence of human serum albumin; synchronous fluorescence; dynamic and electrophoretic light scattering, differential scanning calorimetry and small and wide angle x-ray diffraction. The application of these techniques allowed to predict that MIT-3 has an ubiquitous location at the membrane level, presenting good membrane permeability and a good distribution in the therapeutic target. However, it is also predicted bioaccumulation with distribution in non-therapeutic targets and under conditions of prolonged exposure the drug may cause membrane toxicity as concluded by the impairment of membrane biophysical properties. It is also possible to conclude that the biophysical techniques and the biomimetic models used, constitute a toolbox of strategies for the future evaluation of other drugs.This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013. We also acknowledge PEstC/QUI/UI0081/2013, NORTE-01-0145-FEDER-000028 and PTDC/DTP-FTO/2433/2014. F. Cagide and S. Benfeito are thankful for the pos-doctoral and doctoral grants (SFRH/BPD/74491/2010 and SFRH/BD/99189/2013 respectively). Marlene Lúcio acknowledges the exploratory project funded by FCT with the reference IF/00498/2012. Eduarda Fernandes acknowledges COMPETE 2020 “Programa Operacional Competitividade e internacionalização”.info:eu-repo/semantics/publishedVersionUniversidade do MinhoFernandes, Eduarda BarbosaReal Oliveira, M. Elisabete C.D.Benfeito, S.Cagide, FernandoBorges, F.Lúcio, M.2017-07-042017-07-04T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/49668enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T07:06:30Zoai:repositorium.sdum.uminho.pt:1822/49668Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:15:33.258480Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Drug biophysical profiling using lipid-based colloidal nanosystems and human serum albumin as biomimetic interfaces
title Drug biophysical profiling using lipid-based colloidal nanosystems and human serum albumin as biomimetic interfaces
spellingShingle Drug biophysical profiling using lipid-based colloidal nanosystems and human serum albumin as biomimetic interfaces
Fernandes, Eduarda Barbosa
Nanocarriers
Liposomes
Drug delivery
Ciências Naturais::Ciências Biológicas
title_short Drug biophysical profiling using lipid-based colloidal nanosystems and human serum albumin as biomimetic interfaces
title_full Drug biophysical profiling using lipid-based colloidal nanosystems and human serum albumin as biomimetic interfaces
title_fullStr Drug biophysical profiling using lipid-based colloidal nanosystems and human serum albumin as biomimetic interfaces
title_full_unstemmed Drug biophysical profiling using lipid-based colloidal nanosystems and human serum albumin as biomimetic interfaces
title_sort Drug biophysical profiling using lipid-based colloidal nanosystems and human serum albumin as biomimetic interfaces
author Fernandes, Eduarda Barbosa
author_facet Fernandes, Eduarda Barbosa
Real Oliveira, M. Elisabete C.D.
Benfeito, S.
Cagide, Fernando
Borges, F.
Lúcio, M.
author_role author
author2 Real Oliveira, M. Elisabete C.D.
Benfeito, S.
Cagide, Fernando
Borges, F.
Lúcio, M.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Fernandes, Eduarda Barbosa
Real Oliveira, M. Elisabete C.D.
Benfeito, S.
Cagide, Fernando
Borges, F.
Lúcio, M.
dc.subject.por.fl_str_mv Nanocarriers
Liposomes
Drug delivery
Ciências Naturais::Ciências Biológicas
topic Nanocarriers
Liposomes
Drug delivery
Ciências Naturais::Ciências Biológicas
description The development of new drugs is a highly complex and expensive process, so it is crucial that less promising compounds are rejected early in the discovery phase before progressing to more expensive phases. This scenario impels researchers to refine and speed up the drug discovery process and to seek tools to support decisions related to modifications of the drug chemical structure to improve drugs’ properties and thus increase the probability of success in the process of drug discovery. [1], [2] In the drug discovery process it should be considered that in physiological environment there will be reciprocal interactions between drugs and biological interfaces, such as cell membranes or plasma proteins, and from those interactions different pharmacokinetic profiles can be achieved. [3] Thus, it is important to develop in vitro high throughput methods to evaluate the pharmaceutical profile, consisting in measuring properties such as permeability, lipophilicity, plasma protein binding, and biophysical changes of the membranes, which in turn affect other properties, such as the bioavailability of a drug and its pharmacokinetic profile. [4] Herein, the characterization of a newly synthesized drug (MIT-3) will be based on the measurement of fundamental biophysical properties, which allow inferring about its ADMET profile (absorption, distribution, excretion and toxicity at the membrane level). For this purpose, lipid-based colloidal nanosystems of different compositions were prepared as membrane mimetic models and several biophysical techniques were applied: derivative spectroscopy; quenching of steady-state and time-resolved fluorescence; quenching of intrinsic fluorescence of human serum albumin; synchronous fluorescence; dynamic and electrophoretic light scattering, differential scanning calorimetry and small and wide angle x-ray diffraction. The application of these techniques allowed to predict that MIT-3 has an ubiquitous location at the membrane level, presenting good membrane permeability and a good distribution in the therapeutic target. However, it is also predicted bioaccumulation with distribution in non-therapeutic targets and under conditions of prolonged exposure the drug may cause membrane toxicity as concluded by the impairment of membrane biophysical properties. It is also possible to conclude that the biophysical techniques and the biomimetic models used, constitute a toolbox of strategies for the future evaluation of other drugs.
publishDate 2017
dc.date.none.fl_str_mv 2017-07-04
2017-07-04T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/49668
url http://hdl.handle.net/1822/49668
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595838907023360