Resonant tunnelling diode optoelectronic receivers and transmitters

Bibliographic Details
Main Author: Alomari, Saif Asem Yasin
Publication Date: 2022
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10451/59849
Summary: This thesis describes the research work on double barrier quantum well (DBQW) resonant tunneling diode (RTD) based optoelectronic transmitters and receivers, focused on the design and characterization of resonant tunneling diode photodetectors (RTD-PD) implemented in the In53Ga47As/InP material system for operation at 1.55 μm and 1.31 μm wavelengths, and evaluate numerically the merits of the integration of an RTD/RTD-PD with a laser diode (LDs) to act as simple optoelectronic transmitters. The aim of the work was to investigate simple, low-cost, high-speed transmitter and receiver architectures taking advantage of RTDs properties such as the structural simplicity, high frequency (up to terahertz), and wide-bandwidth built-in electrical gain (roughly, from dc to terahertz). Also described are the preliminary studies of RTD-PDs operation as single photon detector at room temperature utilizing the excitability property. In this work, we evaluate which factors affect the bandwidth of RTD-PDs. Knowing the answer to this, we propose rules and optimizations necessary to achieving high bandwidth (>10 GHz) RTD-PDs. Furthermore, we show how to utilize the built-in amplification, arising from the RTD non-linear current-voltage (IV) curve and the presence of a negative differential resistance region (NDR) to building high responsivity photodetectors that can outperform current commercial technologies, particularly PIN photodiodes, in novel applications. The design and modeling work relied on numerical simulations utilizing the nonequilibrium Green’s function formalism (NEGF), which we implement using Silvaco ATLAS. We briefly introduce the NEGF method and Silvaco ATLAS and utilize them to do the design of the epitaxial structure of novel devices. The results of which are novel models which allow us to predict the effect that the RTD structural parameters (doping concentration and the lengths of both the emitter and collector) have on the peak voltage of the RTD. We study experimentally the factors affecting the bandwidth by optical characterization of several epitaxial layer stacks and propose hypotheses that help to explain the measured bandwidths. We show that for high-speed RTD-PDs (sub nanosecond), the light absorption layers should be confined to the locations where the electric field is sufficiently high and avoiding highly doped thick contact layers with band gap energies below the energy of the photons being detected. Additionally, we outline a set of rules for the design of RTD-PD detectors based on ni-n and p-i-n heterostructures, where the length, location, and doping level of the absorption regions are the relevant parameters to be considered in determining the bandwidth and responsivity of the devices. Moreover, we measure and report on the responsivity of RTDPDs under both DC and AC optical excitation. We show that RTD-PDs can have very high responsivity values reaching up to 1×107 A/W, and electrical bandwidth of around 1.26 GHz (1.75 GHz optical) that is limited by the lifetime of the photo-generated minority carriers (the holes). The last part of the thesis is dedicated to the study of RTD-PD circuits, where the integration between an RTD-PD and a laser diode (LD) is thoroughly examined. The LD acts as a load that is driven by the RTD-PD current. We derive and investigate the equivalent circuit for such a system incorporating the Schulman function for the RTD-PD IV, using the solution to study several operation regimes using MATLAB code. These regimes include the RTD-PD biased in the positive differential resistance region (PDR), when it is biased in the NDR region, and when induced to switch between the PDR and NDR regions. We also show how the excitability property of the RTD-PD can be used for detecting very low signal intensity levels, and the ability of RTDs to operate as voltage-controlled oscillators while biased in the NDR region.
id RCAP_47cd394d146e589c9cc000df653f605e
oai_identifier_str oai:repositorio.ulisboa.pt:10451/59849
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Resonant tunnelling diode optoelectronic receivers and transmittersdíodo de túnel ressonanteoptoeletrônicofoto-detectorde alta velocidadetransmissores ópticosresonant-tunneling-diodeoptoelectronicsphotodetectorshigh-speedoptical-transmittersDomínio/Área Científica::Ciências Naturais::Ciências FísicasThis thesis describes the research work on double barrier quantum well (DBQW) resonant tunneling diode (RTD) based optoelectronic transmitters and receivers, focused on the design and characterization of resonant tunneling diode photodetectors (RTD-PD) implemented in the In53Ga47As/InP material system for operation at 1.55 μm and 1.31 μm wavelengths, and evaluate numerically the merits of the integration of an RTD/RTD-PD with a laser diode (LDs) to act as simple optoelectronic transmitters. The aim of the work was to investigate simple, low-cost, high-speed transmitter and receiver architectures taking advantage of RTDs properties such as the structural simplicity, high frequency (up to terahertz), and wide-bandwidth built-in electrical gain (roughly, from dc to terahertz). Also described are the preliminary studies of RTD-PDs operation as single photon detector at room temperature utilizing the excitability property. In this work, we evaluate which factors affect the bandwidth of RTD-PDs. Knowing the answer to this, we propose rules and optimizations necessary to achieving high bandwidth (>10 GHz) RTD-PDs. Furthermore, we show how to utilize the built-in amplification, arising from the RTD non-linear current-voltage (IV) curve and the presence of a negative differential resistance region (NDR) to building high responsivity photodetectors that can outperform current commercial technologies, particularly PIN photodiodes, in novel applications. The design and modeling work relied on numerical simulations utilizing the nonequilibrium Green’s function formalism (NEGF), which we implement using Silvaco ATLAS. We briefly introduce the NEGF method and Silvaco ATLAS and utilize them to do the design of the epitaxial structure of novel devices. The results of which are novel models which allow us to predict the effect that the RTD structural parameters (doping concentration and the lengths of both the emitter and collector) have on the peak voltage of the RTD. We study experimentally the factors affecting the bandwidth by optical characterization of several epitaxial layer stacks and propose hypotheses that help to explain the measured bandwidths. We show that for high-speed RTD-PDs (sub nanosecond), the light absorption layers should be confined to the locations where the electric field is sufficiently high and avoiding highly doped thick contact layers with band gap energies below the energy of the photons being detected. Additionally, we outline a set of rules for the design of RTD-PD detectors based on ni-n and p-i-n heterostructures, where the length, location, and doping level of the absorption regions are the relevant parameters to be considered in determining the bandwidth and responsivity of the devices. Moreover, we measure and report on the responsivity of RTDPDs under both DC and AC optical excitation. We show that RTD-PDs can have very high responsivity values reaching up to 1×107 A/W, and electrical bandwidth of around 1.26 GHz (1.75 GHz optical) that is limited by the lifetime of the photo-generated minority carriers (the holes). The last part of the thesis is dedicated to the study of RTD-PD circuits, where the integration between an RTD-PD and a laser diode (LD) is thoroughly examined. The LD acts as a load that is driven by the RTD-PD current. We derive and investigate the equivalent circuit for such a system incorporating the Schulman function for the RTD-PD IV, using the solution to study several operation regimes using MATLAB code. These regimes include the RTD-PD biased in the positive differential resistance region (PDR), when it is biased in the NDR region, and when induced to switch between the PDR and NDR regions. We also show how the excitability property of the RTD-PD can be used for detecting very low signal intensity levels, and the ability of RTDs to operate as voltage-controlled oscillators while biased in the NDR region.Figueiredo, José Maria LongrasRepositório da Universidade de LisboaAlomari, Saif Asem Yasin2023-10-17T14:22:35Z2023-062022-092023-06-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10451/59849TID:101704194enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-17T15:01:05Zoai:repositorio.ulisboa.pt:10451/59849Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T03:31:42.873603Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Resonant tunnelling diode optoelectronic receivers and transmitters
title Resonant tunnelling diode optoelectronic receivers and transmitters
spellingShingle Resonant tunnelling diode optoelectronic receivers and transmitters
Alomari, Saif Asem Yasin
díodo de túnel ressonante
optoeletrônico
foto-detector
de alta velocidade
transmissores ópticos
resonant-tunneling-diode
optoelectronics
photodetectors
high-speed
optical-transmitters
Domínio/Área Científica::Ciências Naturais::Ciências Físicas
title_short Resonant tunnelling diode optoelectronic receivers and transmitters
title_full Resonant tunnelling diode optoelectronic receivers and transmitters
title_fullStr Resonant tunnelling diode optoelectronic receivers and transmitters
title_full_unstemmed Resonant tunnelling diode optoelectronic receivers and transmitters
title_sort Resonant tunnelling diode optoelectronic receivers and transmitters
author Alomari, Saif Asem Yasin
author_facet Alomari, Saif Asem Yasin
author_role author
dc.contributor.none.fl_str_mv Figueiredo, José Maria Longras
Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Alomari, Saif Asem Yasin
dc.subject.por.fl_str_mv díodo de túnel ressonante
optoeletrônico
foto-detector
de alta velocidade
transmissores ópticos
resonant-tunneling-diode
optoelectronics
photodetectors
high-speed
optical-transmitters
Domínio/Área Científica::Ciências Naturais::Ciências Físicas
topic díodo de túnel ressonante
optoeletrônico
foto-detector
de alta velocidade
transmissores ópticos
resonant-tunneling-diode
optoelectronics
photodetectors
high-speed
optical-transmitters
Domínio/Área Científica::Ciências Naturais::Ciências Físicas
description This thesis describes the research work on double barrier quantum well (DBQW) resonant tunneling diode (RTD) based optoelectronic transmitters and receivers, focused on the design and characterization of resonant tunneling diode photodetectors (RTD-PD) implemented in the In53Ga47As/InP material system for operation at 1.55 μm and 1.31 μm wavelengths, and evaluate numerically the merits of the integration of an RTD/RTD-PD with a laser diode (LDs) to act as simple optoelectronic transmitters. The aim of the work was to investigate simple, low-cost, high-speed transmitter and receiver architectures taking advantage of RTDs properties such as the structural simplicity, high frequency (up to terahertz), and wide-bandwidth built-in electrical gain (roughly, from dc to terahertz). Also described are the preliminary studies of RTD-PDs operation as single photon detector at room temperature utilizing the excitability property. In this work, we evaluate which factors affect the bandwidth of RTD-PDs. Knowing the answer to this, we propose rules and optimizations necessary to achieving high bandwidth (>10 GHz) RTD-PDs. Furthermore, we show how to utilize the built-in amplification, arising from the RTD non-linear current-voltage (IV) curve and the presence of a negative differential resistance region (NDR) to building high responsivity photodetectors that can outperform current commercial technologies, particularly PIN photodiodes, in novel applications. The design and modeling work relied on numerical simulations utilizing the nonequilibrium Green’s function formalism (NEGF), which we implement using Silvaco ATLAS. We briefly introduce the NEGF method and Silvaco ATLAS and utilize them to do the design of the epitaxial structure of novel devices. The results of which are novel models which allow us to predict the effect that the RTD structural parameters (doping concentration and the lengths of both the emitter and collector) have on the peak voltage of the RTD. We study experimentally the factors affecting the bandwidth by optical characterization of several epitaxial layer stacks and propose hypotheses that help to explain the measured bandwidths. We show that for high-speed RTD-PDs (sub nanosecond), the light absorption layers should be confined to the locations where the electric field is sufficiently high and avoiding highly doped thick contact layers with band gap energies below the energy of the photons being detected. Additionally, we outline a set of rules for the design of RTD-PD detectors based on ni-n and p-i-n heterostructures, where the length, location, and doping level of the absorption regions are the relevant parameters to be considered in determining the bandwidth and responsivity of the devices. Moreover, we measure and report on the responsivity of RTDPDs under both DC and AC optical excitation. We show that RTD-PDs can have very high responsivity values reaching up to 1×107 A/W, and electrical bandwidth of around 1.26 GHz (1.75 GHz optical) that is limited by the lifetime of the photo-generated minority carriers (the holes). The last part of the thesis is dedicated to the study of RTD-PD circuits, where the integration between an RTD-PD and a laser diode (LD) is thoroughly examined. The LD acts as a load that is driven by the RTD-PD current. We derive and investigate the equivalent circuit for such a system incorporating the Schulman function for the RTD-PD IV, using the solution to study several operation regimes using MATLAB code. These regimes include the RTD-PD biased in the positive differential resistance region (PDR), when it is biased in the NDR region, and when induced to switch between the PDR and NDR regions. We also show how the excitability property of the RTD-PD can be used for detecting very low signal intensity levels, and the ability of RTDs to operate as voltage-controlled oscillators while biased in the NDR region.
publishDate 2022
dc.date.none.fl_str_mv 2022-09
2023-10-17T14:22:35Z
2023-06
2023-06-01T00:00:00Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/59849
TID:101704194
url http://hdl.handle.net/10451/59849
identifier_str_mv TID:101704194
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601732523851776