Improving eQTL Analysis Using a Machine Learning Approach for Data Integration
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2018 |
| Outros Autores: | , , , , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/85459 |
Resumo: | Beretta, S., Castelli, M., Gonçalves, I., Kel, I., Giansanti, V., & Merelli, I. (2018). Improving eQTL Analysis Using a Machine Learning Approach for Data Integration: A Logistic Model Tree Solution. Journal of Computational Biology, 25(10), 1091-1105. DOI: 10.1089/cmb.2017.0167 |
| id |
RCAP_478153ee3100afbbef0faa3e4b4284d6 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/85459 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Improving eQTL Analysis Using a Machine Learning Approach for Data IntegrationA Logistic Model Tree Solutiondata integrationeQTL analysisevolutionary algorithmgenetic programmingmachine learningModelling and SimulationMolecular BiologyGeneticsComputational MathematicsComputational Theory and MathematicsBeretta, S., Castelli, M., Gonçalves, I., Kel, I., Giansanti, V., & Merelli, I. (2018). Improving eQTL Analysis Using a Machine Learning Approach for Data Integration: A Logistic Model Tree Solution. Journal of Computational Biology, 25(10), 1091-1105. DOI: 10.1089/cmb.2017.0167Expression quantitative trait loci (eQTL) analysis is an emerging method for establishing the impact of genetic variations (such as single nucleotide polymorphisms) on the expression levels of genes. Although different methods for evaluating the impact of these variations are proposed in the literature, the results obtained are mostly in disagreement, entailing a considerable number of false-positive predictions. For this reason, we propose an approach based on Logistic Model Trees that integrates the predictions of different eQTL mapping tools to produce more reliable results. More precisely, we employ a machine learning-based method using logistic functions to perform a linear regression able to classify the predictions of three eQTL analysis tools (namely, R/qtl, MatrixEQTL, and mRMR). Given the lack of a reference dataset and that computational predictions are not so easy to test experimentally, the performance of our approach is assessed using data from the DREAM5 challenge. The results show the quality of the aggregated prediction is better than that obtained by each single tool in terms of both precision and recall. We also performed a test on real data, employing genotypes and microRNA expression profiles from Caenorhabditis elegans, which proved that we were able to correctly classify all the experimentally validated eQTLs. These good results come both from the integration of the different predictions, and from the ability of this machine learning algorithm to find the best cutoff thresholds for each tool. This combination makes our integration approach suitable for improving eQTL predictions for testing in a laboratory, reducing the number of false-positive results.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNBeretta, StefanoCastelli, MauroGonçalves, IvoKel, IvanGiansanti, ValentinaMerelli, Ivan2019-10-25T22:59:16Z2018-10-012018-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article15application/pdfhttp://hdl.handle.net/10362/85459eng1066-5277PURE: 6082339http://www.scopus.com/inward/record.url?scp=85054439017&partnerID=8YFLogxKhttps://doi.org/10.1089/cmb.2017.0167info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:41:54Zoai:run.unl.pt:10362/85459Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:13:20.582047Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Improving eQTL Analysis Using a Machine Learning Approach for Data Integration A Logistic Model Tree Solution |
| title |
Improving eQTL Analysis Using a Machine Learning Approach for Data Integration |
| spellingShingle |
Improving eQTL Analysis Using a Machine Learning Approach for Data Integration Beretta, Stefano data integration eQTL analysis evolutionary algorithm genetic programming machine learning Modelling and Simulation Molecular Biology Genetics Computational Mathematics Computational Theory and Mathematics |
| title_short |
Improving eQTL Analysis Using a Machine Learning Approach for Data Integration |
| title_full |
Improving eQTL Analysis Using a Machine Learning Approach for Data Integration |
| title_fullStr |
Improving eQTL Analysis Using a Machine Learning Approach for Data Integration |
| title_full_unstemmed |
Improving eQTL Analysis Using a Machine Learning Approach for Data Integration |
| title_sort |
Improving eQTL Analysis Using a Machine Learning Approach for Data Integration |
| author |
Beretta, Stefano |
| author_facet |
Beretta, Stefano Castelli, Mauro Gonçalves, Ivo Kel, Ivan Giansanti, Valentina Merelli, Ivan |
| author_role |
author |
| author2 |
Castelli, Mauro Gonçalves, Ivo Kel, Ivan Giansanti, Valentina Merelli, Ivan |
| author2_role |
author author author author author |
| dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
| dc.contributor.author.fl_str_mv |
Beretta, Stefano Castelli, Mauro Gonçalves, Ivo Kel, Ivan Giansanti, Valentina Merelli, Ivan |
| dc.subject.por.fl_str_mv |
data integration eQTL analysis evolutionary algorithm genetic programming machine learning Modelling and Simulation Molecular Biology Genetics Computational Mathematics Computational Theory and Mathematics |
| topic |
data integration eQTL analysis evolutionary algorithm genetic programming machine learning Modelling and Simulation Molecular Biology Genetics Computational Mathematics Computational Theory and Mathematics |
| description |
Beretta, S., Castelli, M., Gonçalves, I., Kel, I., Giansanti, V., & Merelli, I. (2018). Improving eQTL Analysis Using a Machine Learning Approach for Data Integration: A Logistic Model Tree Solution. Journal of Computational Biology, 25(10), 1091-1105. DOI: 10.1089/cmb.2017.0167 |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-10-01 2018-10-01T00:00:00Z 2019-10-25T22:59:16Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/85459 |
| url |
http://hdl.handle.net/10362/85459 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
1066-5277 PURE: 6082339 http://www.scopus.com/inward/record.url?scp=85054439017&partnerID=8YFLogxK https://doi.org/10.1089/cmb.2017.0167 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
15 application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596528430678016 |