Retrofitting Typestates into Rust

Bibliographic Details
Main Author: Duarte, José Miguel Gonçalves
Publication Date: 2021
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/158896
Summary: As software becomes more prevalent in our lives, bugs are able to cause significant disruption. Thus, preventing them becomes a priority when trying to develop dependable systems. While reducing their occurrence possibility to zero is infeasible, existing approaches are able to eliminate certain subsets of bugs. Rust is a systems programming language that addresses memory-related bugs by design, eliminating bugs like use-after-free. To achieve this, Rust leverages the type system along with information about object lifetimes, allowing the compiler to keep track of objects throughout the program and checking for memory misusage. While preventing memory-related bugs goes a long way in software security, other categories of bugs remain in Rust. One of which would be Application Programming Interface (API) misusage, where the developer does not respect constraints put in place by an API, thus resulting in the program crashing. Typestates elevate state to the type level, allowing for the enforcement of API constraints at compile-time, relieving the developer from the burden that is keeping track of the possible computation states at runtime, and preventing possible API misusage during development. While Rust does not support typestates by design, the type system is powerful enough to express and validate typestates. I propose a new macro-based approach to deal with typestates in Rust; this approach provides an embedded Domain-Specific Language (DSL) which allows developers to express typestates using only existing Rust syntax. Furthermore, Rust’s macro system is leveraged to extract a state machine out of the typestate specification and then perform compile-time checks over the specification. Afterwards we leverage Rust’s type system to check protocol-compliance. The DSL avoids workflow-bloat by requiring nothing but a Rust compiler and the library itself.
id RCAP_4420ed5452000a449e74d2cbbe897865
oai_identifier_str oai:run.unl.pt:10362/158896
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Retrofitting Typestates into RustBehavioral typestypestatesmeta-programmingmacrosRustDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaAs software becomes more prevalent in our lives, bugs are able to cause significant disruption. Thus, preventing them becomes a priority when trying to develop dependable systems. While reducing their occurrence possibility to zero is infeasible, existing approaches are able to eliminate certain subsets of bugs. Rust is a systems programming language that addresses memory-related bugs by design, eliminating bugs like use-after-free. To achieve this, Rust leverages the type system along with information about object lifetimes, allowing the compiler to keep track of objects throughout the program and checking for memory misusage. While preventing memory-related bugs goes a long way in software security, other categories of bugs remain in Rust. One of which would be Application Programming Interface (API) misusage, where the developer does not respect constraints put in place by an API, thus resulting in the program crashing. Typestates elevate state to the type level, allowing for the enforcement of API constraints at compile-time, relieving the developer from the burden that is keeping track of the possible computation states at runtime, and preventing possible API misusage during development. While Rust does not support typestates by design, the type system is powerful enough to express and validate typestates. I propose a new macro-based approach to deal with typestates in Rust; this approach provides an embedded Domain-Specific Language (DSL) which allows developers to express typestates using only existing Rust syntax. Furthermore, Rust’s macro system is leveraged to extract a state machine out of the typestate specification and then perform compile-time checks over the specification. Afterwards we leverage Rust’s type system to check protocol-compliance. The DSL avoids workflow-bloat by requiring nothing but a Rust compiler and the library itself.À medida que as nossas vidas estão cada vez mais dependentes de software, os erros do mesmo têm o potencial de causar problemas significativos. Prevenir estes erros torna-se uma tarefa prioritária durante o desenvolvimento de sistemas confiáveis. Erradicar erros por completo é impossível, mas é possível eliminar certos conjuntos. Rust é uma linguagem de programação de sistemas que, por desenho, endereça erros de gestão de memória. Para o conseguir, a linguagem inclui no sistema de tipos informação sobre o tempo de vida dos objetos, permitindo assim que o compilador conheça a utilização dos mesmos e detecte erros de utilização de memória. Apesar da prevenção de erros de memória ter um papel importante na segurança de software, existem ainda outras categorias de erros em Rust, como o uso incorrecto de interfaces de programação, em que o programador não respeita as restrições impostas pela mesma, o que resulta numa falha do programa. Typestates elevam o conceito de estado para o sistema de tipos, permitindo a aplicação das restrições da interface durante a fase de compilação. Este conceito permite assim aliviar o programador da responsabilidade que é conceptualizar e manter o estado do programa em mente durante o desenvolvimento, prevenindo o mau uso das interfaces. Apesar de Rust não suportar typestates de uma forma natural, o sistema de tipos permite expressar e validar typestates. Proponho uma nova abordagem de modo a lidar com typestates em Rust, tal abordagem é baseada numa DSL embebida na linguagem, permitindo assim a descrição de typestates usando apenas a sintaxe existente. A DSL vai mais além e providencia ainda verificações estáticas sobre a especificação, tirando proveito do sistema de macros, extrai uma máquina de estados que é depois verificada, por fim, a verificação de conformidade é feita pelo compilador, tirando proveito do sistema de tipos. A DSL evita poluição do ambiente trabalho, requerendo apenas um compilador de Rust e a sua própria biblioteca.Ravara, AntónioRUNDuarte, José Miguel Gonçalves2023-10-13T15:05:58Z2021-092021-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/158896enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:15:03Zoai:run.unl.pt:10362/158896Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:45:31.396323Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Retrofitting Typestates into Rust
title Retrofitting Typestates into Rust
spellingShingle Retrofitting Typestates into Rust
Duarte, José Miguel Gonçalves
Behavioral types
typestates
meta-programming
macros
Rust
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Retrofitting Typestates into Rust
title_full Retrofitting Typestates into Rust
title_fullStr Retrofitting Typestates into Rust
title_full_unstemmed Retrofitting Typestates into Rust
title_sort Retrofitting Typestates into Rust
author Duarte, José Miguel Gonçalves
author_facet Duarte, José Miguel Gonçalves
author_role author
dc.contributor.none.fl_str_mv Ravara, António
RUN
dc.contributor.author.fl_str_mv Duarte, José Miguel Gonçalves
dc.subject.por.fl_str_mv Behavioral types
typestates
meta-programming
macros
Rust
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Behavioral types
typestates
meta-programming
macros
Rust
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description As software becomes more prevalent in our lives, bugs are able to cause significant disruption. Thus, preventing them becomes a priority when trying to develop dependable systems. While reducing their occurrence possibility to zero is infeasible, existing approaches are able to eliminate certain subsets of bugs. Rust is a systems programming language that addresses memory-related bugs by design, eliminating bugs like use-after-free. To achieve this, Rust leverages the type system along with information about object lifetimes, allowing the compiler to keep track of objects throughout the program and checking for memory misusage. While preventing memory-related bugs goes a long way in software security, other categories of bugs remain in Rust. One of which would be Application Programming Interface (API) misusage, where the developer does not respect constraints put in place by an API, thus resulting in the program crashing. Typestates elevate state to the type level, allowing for the enforcement of API constraints at compile-time, relieving the developer from the burden that is keeping track of the possible computation states at runtime, and preventing possible API misusage during development. While Rust does not support typestates by design, the type system is powerful enough to express and validate typestates. I propose a new macro-based approach to deal with typestates in Rust; this approach provides an embedded Domain-Specific Language (DSL) which allows developers to express typestates using only existing Rust syntax. Furthermore, Rust’s macro system is leveraged to extract a state machine out of the typestate specification and then perform compile-time checks over the specification. Afterwards we leverage Rust’s type system to check protocol-compliance. The DSL avoids workflow-bloat by requiring nothing but a Rust compiler and the library itself.
publishDate 2021
dc.date.none.fl_str_mv 2021-09
2021-09-01T00:00:00Z
2023-10-13T15:05:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/158896
url http://hdl.handle.net/10362/158896
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596942862516224