On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices
Main Author: | |
---|---|
Publication Date: | 2018 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/23003 |
Summary: | Let $G$ be a simple undirected graph. Let $0\leq \alpha \leq 1$. Let $$A_{\alpha}(G)= \alpha D(G) + (1-\alpha) A(G)$$ where $D(G)$ and $A(G)$ are the diagonal matrix of the vertex degrees of $G$ and the adjacency matrix of $G$, respectively. Let $p(G)>0$ and $q(G)$ be the number of pendant vertices and quasi-pendant vertices of $G$, respectively. Let $m_{G}(\alpha)$ be the multiplicity of $\alpha$ as eigenvalue of $A_{\alpha}(G)$. It is proved that \begin{equation*} m_{G}(\alpha) \geq p(G) - q(G) \end{equation*} with equality if each internal vertex is a quasi-pendant vertex. If there is at least one internal vertex which is not a quasi-pendant vertex, the equality \begin{equation*} m_{G}(\alpha)= p(G)-q(G)+m_{N}(\alpha) \end{equation*} is determined in which $m_{N}(\alpha)$ is the multiplicity of $\alpha$ as eigenvalue of the matrix $N$. This matrix is obtained from $A_{\alpha}(G)$ taking the entries corresponding to the internal vertices which are non quasi-pendant vertices. These results are applied to search for the multiplicity of $\alpha$ as eigenvalue of $A_{\alpha}(G)$ when $G$ is a path, a caterpillar, a circular caterpillar, a generalized Bethe tree or a Bethe tree. For the Bethe tree case, a simple formula for the nullity is given. |
id |
RCAP_440f41a11d49dcc096682d8981af9fd6 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/23003 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant verticesAdjacency matrixSignless Laplacian matrixLaplacian matrixConvex combination of matricesGraph eigenvaluesLet $G$ be a simple undirected graph. Let $0\leq \alpha \leq 1$. Let $$A_{\alpha}(G)= \alpha D(G) + (1-\alpha) A(G)$$ where $D(G)$ and $A(G)$ are the diagonal matrix of the vertex degrees of $G$ and the adjacency matrix of $G$, respectively. Let $p(G)>0$ and $q(G)$ be the number of pendant vertices and quasi-pendant vertices of $G$, respectively. Let $m_{G}(\alpha)$ be the multiplicity of $\alpha$ as eigenvalue of $A_{\alpha}(G)$. It is proved that \begin{equation*} m_{G}(\alpha) \geq p(G) - q(G) \end{equation*} with equality if each internal vertex is a quasi-pendant vertex. If there is at least one internal vertex which is not a quasi-pendant vertex, the equality \begin{equation*} m_{G}(\alpha)= p(G)-q(G)+m_{N}(\alpha) \end{equation*} is determined in which $m_{N}(\alpha)$ is the multiplicity of $\alpha$ as eigenvalue of the matrix $N$. This matrix is obtained from $A_{\alpha}(G)$ taking the entries corresponding to the internal vertices which are non quasi-pendant vertices. These results are applied to search for the multiplicity of $\alpha$ as eigenvalue of $A_{\alpha}(G)$ when $G$ is a path, a caterpillar, a circular caterpillar, a generalized Bethe tree or a Bethe tree. For the Bethe tree case, a simple formula for the nullity is given.Elsevier2018-04-162018-04-16T00:00:00Z2020-04-09T10:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/23003eng0024-379510.1016/j.laa.2018.04.013Cardoso, Domingos M.Pastén, GermainRojo, Oscarinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:14:16Zoai:ria.ua.pt:10773/23003Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:01:39.732617Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices |
title |
On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices |
spellingShingle |
On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices Cardoso, Domingos M. Adjacency matrix Signless Laplacian matrix Laplacian matrix Convex combination of matrices Graph eigenvalues |
title_short |
On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices |
title_full |
On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices |
title_fullStr |
On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices |
title_full_unstemmed |
On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices |
title_sort |
On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices |
author |
Cardoso, Domingos M. |
author_facet |
Cardoso, Domingos M. Pastén, Germain Rojo, Oscar |
author_role |
author |
author2 |
Pastén, Germain Rojo, Oscar |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Cardoso, Domingos M. Pastén, Germain Rojo, Oscar |
dc.subject.por.fl_str_mv |
Adjacency matrix Signless Laplacian matrix Laplacian matrix Convex combination of matrices Graph eigenvalues |
topic |
Adjacency matrix Signless Laplacian matrix Laplacian matrix Convex combination of matrices Graph eigenvalues |
description |
Let $G$ be a simple undirected graph. Let $0\leq \alpha \leq 1$. Let $$A_{\alpha}(G)= \alpha D(G) + (1-\alpha) A(G)$$ where $D(G)$ and $A(G)$ are the diagonal matrix of the vertex degrees of $G$ and the adjacency matrix of $G$, respectively. Let $p(G)>0$ and $q(G)$ be the number of pendant vertices and quasi-pendant vertices of $G$, respectively. Let $m_{G}(\alpha)$ be the multiplicity of $\alpha$ as eigenvalue of $A_{\alpha}(G)$. It is proved that \begin{equation*} m_{G}(\alpha) \geq p(G) - q(G) \end{equation*} with equality if each internal vertex is a quasi-pendant vertex. If there is at least one internal vertex which is not a quasi-pendant vertex, the equality \begin{equation*} m_{G}(\alpha)= p(G)-q(G)+m_{N}(\alpha) \end{equation*} is determined in which $m_{N}(\alpha)$ is the multiplicity of $\alpha$ as eigenvalue of the matrix $N$. This matrix is obtained from $A_{\alpha}(G)$ taking the entries corresponding to the internal vertices which are non quasi-pendant vertices. These results are applied to search for the multiplicity of $\alpha$ as eigenvalue of $A_{\alpha}(G)$ when $G$ is a path, a caterpillar, a circular caterpillar, a generalized Bethe tree or a Bethe tree. For the Bethe tree case, a simple formula for the nullity is given. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04-16 2018-04-16T00:00:00Z 2020-04-09T10:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/23003 |
url |
http://hdl.handle.net/10773/23003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0024-3795 10.1016/j.laa.2018.04.013 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594234143244288 |