Desenvolvimento e avaliação de uma estratégia de gestão energética em FCHEV

Detalhes bibliográficos
Autor(a) principal: Reisinho, Carla Alexandra Silva
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.22/20865
Resumo: Devido à crescente preocupação com as alterações climáticas e à consequente mudança de paradigma, gradualmente são utilizados mais veículos elétricos e híbridos, como é o caso dos FCHEV (Fuel cell Hybrid Electric Vehicle). Como é característico nos veículos híbridos, a existência de duas fontes de energia faz com que seja crucial otimizar a distribuição de potência, sendo esta a chave para melhorar o desempenho do veículo. Assim, definiu-se como medida principal de desempenho o consumo equivalente em Gasoline Gallon Equivalent, que efetua um tradeoff entre o consumo de hidrogénio e o consumo ponderado de energia da bateria, em função do seu estado de carga. Tendo como principais objetivos o aumento do tempo de vida dos componentes e a redução do consumo do veículo, construiu-se uma estratégia de gestão energética em tempo real, baseada em programação dinâmica, com extração de regras de controlo pela response surface methodology e implementação de machine learning para a identificação dos tipos de ciclo de condução. A estratégia foi construída e simulada em Matlab, partindo da modelação do sistema e da implementação da função DPM (Dynamic Programming Matrix), desenvolvida pelo instituto ETH Zurich para efetuar a programação dinâmica. Seguidamente, foi utilizada a função stepwiselm e a app Regression Learner para extrair as regras de controlo e, finalmente, recorreu-se à app Classification Learner para identificar os ciclos de condução. Toda a estratégia foi complementada com o Matlab Coder, para fazer a transição do algoritmo para linguagem C, suportada pela ECU. Os resultados foram analisados no final de cada fase de implementação, validando a metodologia proposta. Assim, na fase de otimização demonstrou-se que é possível melhorar o consumo equivalente, relativamente ao algoritmo implementado no veículo, obtendo-se uma redução média superior a 15%, sem se demonstrarem alterações significativas no consumo de H2. A partir destes resultados, efetuou-se a extração de regras de controlo, utilizando duas estratégias distintas: regressões não lineares e árvores de decisão. No caso da primeira, não foi possível demonstrar que efetivamente o consumo equivalente é menor, apesar da percentagem de redução desse consumo ser em média superior a zero. No caso da segunda, a robustez do modelo de machine learning demonstrou que em média o consumo equivalente é menor do que no algoritmo atualmente presente no autocarro, sendo que a percentagem de redução em média ultrapassa os 10%. Com ambas as estratégias, as alterações no consumo de H2 não se mostraram significativas. Na fase de reconhecimento do ciclo de condução, utilizou-se uma árvore de decisão que foi analisada para diferentes tempos de decisão, demonstrando-se que com 600 e 300 segundos a identificação apresentou os melhores resultados de accuracy, sendo percetível que para 300 segundos será reduzido o espaço em memória na ECU para armazenamento dos parâmetros de condução, mostrando-se também ser mais preciso em cenários mais semelhantes com a realidade. Finalmente os testes de estrada demonstraram melhorias de 15.7% no consumo equivalente, 24.4% no consumo de H2 e 6.8% no rendimento, com a estratégia que utiliza regressões não lineares. No entanto, o algoritmo mais adequado seria o construído com árvores de decisão, que devido à sua complexidade não foi possível de implementar na ECU.
id RCAP_421fdf5e5ce82005b69ed1c83244a1f2
oai_identifier_str oai:recipp.ipp.pt:10400.22/20865
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Desenvolvimento e avaliação de uma estratégia de gestão energética em FCHEVFCHEVEstratégia de Gestão EnergéticaProgramação DinâmicaFuel CellConsumo EquivalenteEnergy Management StrategyDynamic ProgrammingEquivalent ConsumptionDevido à crescente preocupação com as alterações climáticas e à consequente mudança de paradigma, gradualmente são utilizados mais veículos elétricos e híbridos, como é o caso dos FCHEV (Fuel cell Hybrid Electric Vehicle). Como é característico nos veículos híbridos, a existência de duas fontes de energia faz com que seja crucial otimizar a distribuição de potência, sendo esta a chave para melhorar o desempenho do veículo. Assim, definiu-se como medida principal de desempenho o consumo equivalente em Gasoline Gallon Equivalent, que efetua um tradeoff entre o consumo de hidrogénio e o consumo ponderado de energia da bateria, em função do seu estado de carga. Tendo como principais objetivos o aumento do tempo de vida dos componentes e a redução do consumo do veículo, construiu-se uma estratégia de gestão energética em tempo real, baseada em programação dinâmica, com extração de regras de controlo pela response surface methodology e implementação de machine learning para a identificação dos tipos de ciclo de condução. A estratégia foi construída e simulada em Matlab, partindo da modelação do sistema e da implementação da função DPM (Dynamic Programming Matrix), desenvolvida pelo instituto ETH Zurich para efetuar a programação dinâmica. Seguidamente, foi utilizada a função stepwiselm e a app Regression Learner para extrair as regras de controlo e, finalmente, recorreu-se à app Classification Learner para identificar os ciclos de condução. Toda a estratégia foi complementada com o Matlab Coder, para fazer a transição do algoritmo para linguagem C, suportada pela ECU. Os resultados foram analisados no final de cada fase de implementação, validando a metodologia proposta. Assim, na fase de otimização demonstrou-se que é possível melhorar o consumo equivalente, relativamente ao algoritmo implementado no veículo, obtendo-se uma redução média superior a 15%, sem se demonstrarem alterações significativas no consumo de H2. A partir destes resultados, efetuou-se a extração de regras de controlo, utilizando duas estratégias distintas: regressões não lineares e árvores de decisão. No caso da primeira, não foi possível demonstrar que efetivamente o consumo equivalente é menor, apesar da percentagem de redução desse consumo ser em média superior a zero. No caso da segunda, a robustez do modelo de machine learning demonstrou que em média o consumo equivalente é menor do que no algoritmo atualmente presente no autocarro, sendo que a percentagem de redução em média ultrapassa os 10%. Com ambas as estratégias, as alterações no consumo de H2 não se mostraram significativas. Na fase de reconhecimento do ciclo de condução, utilizou-se uma árvore de decisão que foi analisada para diferentes tempos de decisão, demonstrando-se que com 600 e 300 segundos a identificação apresentou os melhores resultados de accuracy, sendo percetível que para 300 segundos será reduzido o espaço em memória na ECU para armazenamento dos parâmetros de condução, mostrando-se também ser mais preciso em cenários mais semelhantes com a realidade. Finalmente os testes de estrada demonstraram melhorias de 15.7% no consumo equivalente, 24.4% no consumo de H2 e 6.8% no rendimento, com a estratégia que utiliza regressões não lineares. No entanto, o algoritmo mais adequado seria o construído com árvores de decisão, que devido à sua complexidade não foi possível de implementar na ECU.Lopes, Manuel Joaquim PereiraREPOSITÓRIO P.PORTOReisinho, Carla Alexandra Silva20222025-07-19T00:00:00Z2022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/20865urn:tid:203058682porinfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-07T10:32:42Zoai:recipp.ipp.pt:10400.22/20865Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T01:00:36.580372Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Desenvolvimento e avaliação de uma estratégia de gestão energética em FCHEV
title Desenvolvimento e avaliação de uma estratégia de gestão energética em FCHEV
spellingShingle Desenvolvimento e avaliação de uma estratégia de gestão energética em FCHEV
Reisinho, Carla Alexandra Silva
FCHEV
Estratégia de Gestão Energética
Programação Dinâmica
Fuel Cell
Consumo Equivalente
Energy Management Strategy
Dynamic Programming
Equivalent Consumption
title_short Desenvolvimento e avaliação de uma estratégia de gestão energética em FCHEV
title_full Desenvolvimento e avaliação de uma estratégia de gestão energética em FCHEV
title_fullStr Desenvolvimento e avaliação de uma estratégia de gestão energética em FCHEV
title_full_unstemmed Desenvolvimento e avaliação de uma estratégia de gestão energética em FCHEV
title_sort Desenvolvimento e avaliação de uma estratégia de gestão energética em FCHEV
author Reisinho, Carla Alexandra Silva
author_facet Reisinho, Carla Alexandra Silva
author_role author
dc.contributor.none.fl_str_mv Lopes, Manuel Joaquim Pereira
REPOSITÓRIO P.PORTO
dc.contributor.author.fl_str_mv Reisinho, Carla Alexandra Silva
dc.subject.por.fl_str_mv FCHEV
Estratégia de Gestão Energética
Programação Dinâmica
Fuel Cell
Consumo Equivalente
Energy Management Strategy
Dynamic Programming
Equivalent Consumption
topic FCHEV
Estratégia de Gestão Energética
Programação Dinâmica
Fuel Cell
Consumo Equivalente
Energy Management Strategy
Dynamic Programming
Equivalent Consumption
description Devido à crescente preocupação com as alterações climáticas e à consequente mudança de paradigma, gradualmente são utilizados mais veículos elétricos e híbridos, como é o caso dos FCHEV (Fuel cell Hybrid Electric Vehicle). Como é característico nos veículos híbridos, a existência de duas fontes de energia faz com que seja crucial otimizar a distribuição de potência, sendo esta a chave para melhorar o desempenho do veículo. Assim, definiu-se como medida principal de desempenho o consumo equivalente em Gasoline Gallon Equivalent, que efetua um tradeoff entre o consumo de hidrogénio e o consumo ponderado de energia da bateria, em função do seu estado de carga. Tendo como principais objetivos o aumento do tempo de vida dos componentes e a redução do consumo do veículo, construiu-se uma estratégia de gestão energética em tempo real, baseada em programação dinâmica, com extração de regras de controlo pela response surface methodology e implementação de machine learning para a identificação dos tipos de ciclo de condução. A estratégia foi construída e simulada em Matlab, partindo da modelação do sistema e da implementação da função DPM (Dynamic Programming Matrix), desenvolvida pelo instituto ETH Zurich para efetuar a programação dinâmica. Seguidamente, foi utilizada a função stepwiselm e a app Regression Learner para extrair as regras de controlo e, finalmente, recorreu-se à app Classification Learner para identificar os ciclos de condução. Toda a estratégia foi complementada com o Matlab Coder, para fazer a transição do algoritmo para linguagem C, suportada pela ECU. Os resultados foram analisados no final de cada fase de implementação, validando a metodologia proposta. Assim, na fase de otimização demonstrou-se que é possível melhorar o consumo equivalente, relativamente ao algoritmo implementado no veículo, obtendo-se uma redução média superior a 15%, sem se demonstrarem alterações significativas no consumo de H2. A partir destes resultados, efetuou-se a extração de regras de controlo, utilizando duas estratégias distintas: regressões não lineares e árvores de decisão. No caso da primeira, não foi possível demonstrar que efetivamente o consumo equivalente é menor, apesar da percentagem de redução desse consumo ser em média superior a zero. No caso da segunda, a robustez do modelo de machine learning demonstrou que em média o consumo equivalente é menor do que no algoritmo atualmente presente no autocarro, sendo que a percentagem de redução em média ultrapassa os 10%. Com ambas as estratégias, as alterações no consumo de H2 não se mostraram significativas. Na fase de reconhecimento do ciclo de condução, utilizou-se uma árvore de decisão que foi analisada para diferentes tempos de decisão, demonstrando-se que com 600 e 300 segundos a identificação apresentou os melhores resultados de accuracy, sendo percetível que para 300 segundos será reduzido o espaço em memória na ECU para armazenamento dos parâmetros de condução, mostrando-se também ser mais preciso em cenários mais semelhantes com a realidade. Finalmente os testes de estrada demonstraram melhorias de 15.7% no consumo equivalente, 24.4% no consumo de H2 e 6.8% no rendimento, com a estratégia que utiliza regressões não lineares. No entanto, o algoritmo mais adequado seria o construído com árvores de decisão, que devido à sua complexidade não foi possível de implementar na ECU.
publishDate 2022
dc.date.none.fl_str_mv 2022
2022-01-01T00:00:00Z
2025-07-19T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/20865
urn:tid:203058682
url http://hdl.handle.net/10400.22/20865
identifier_str_mv urn:tid:203058682
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600795507949568