Object detection with RetinaNet on aerial imagery: the Algarve landscape
Main Author: | |
---|---|
Publication Date: | 2021 |
Other Authors: | , , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/1822/75255 |
Summary: | This work presents a study of the different existing object detection algorithms and the implementation of a Deep Learning model capable of detecting swimming pools from satellite images. In order to obtain the best results for this particular task, the RetinaNet algorithm was chosen. The model was trained using a customised dataset from Kaggle and tested with a newly developed dataset containing aerial images of the Algarve landscape and a random dataset of images obtained from Google Maps. The performance of the trained model is discussed using several metrics. The model can be used by the authorities to detect illegal swimming pools in any region, especially in the Algarve region due to the high density of pools there. |
id |
RCAP_3fecaf1e0e2bdcef3bd602c41e29550f |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/75255 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Object detection with RetinaNet on aerial imagery: the Algarve landscapeComputer visionNeural networksDeep learningObject detectionRetinaNetCiências Naturais::MatemáticasScience & TechnologyThis work presents a study of the different existing object detection algorithms and the implementation of a Deep Learning model capable of detecting swimming pools from satellite images. In order to obtain the best results for this particular task, the RetinaNet algorithm was chosen. The model was trained using a customised dataset from Kaggle and tested with a newly developed dataset containing aerial images of the Algarve landscape and a random dataset of images obtained from Google Maps. The performance of the trained model is discussed using several metrics. The model can be used by the authorities to detect illegal swimming pools in any region, especially in the Algarve region due to the high density of pools there.Supported by FCT - Fundacao para a Ciencia e a Tecnologia, through projects UIDB/00013/2020 and UIDP/00013/2020 of CMAT-UM.SpringerUniversidade do MinhoCoelho, C.Costa, M. Fernanda P.Ferrás, Luís Jorge LimaSoares, A. J.2021-09-112021-09-11T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/75255engCoelho C., Costa M.F.P., Ferrás L.L., Soares A.J. (2021) Object Detection with RetinaNet on Aerial Imagery: The Algarve Landscape. In: Gervasi O. et al. (eds) Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science, vol 12950. Springer, Cham. https://doi.org/10.1007/978-3-030-86960-1_35978-3-030-86959-50302-974310.1007/978-3-030-86960-1_35978-3-030-86960-1https://link.springer.com/chapter/10.1007/978-3-030-86960-1_35info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:26:01Zoai:repositorium.sdum.uminho.pt:1822/75255Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:18:18.899793Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Object detection with RetinaNet on aerial imagery: the Algarve landscape |
title |
Object detection with RetinaNet on aerial imagery: the Algarve landscape |
spellingShingle |
Object detection with RetinaNet on aerial imagery: the Algarve landscape Coelho, C. Computer vision Neural networks Deep learning Object detection RetinaNet Ciências Naturais::Matemáticas Science & Technology |
title_short |
Object detection with RetinaNet on aerial imagery: the Algarve landscape |
title_full |
Object detection with RetinaNet on aerial imagery: the Algarve landscape |
title_fullStr |
Object detection with RetinaNet on aerial imagery: the Algarve landscape |
title_full_unstemmed |
Object detection with RetinaNet on aerial imagery: the Algarve landscape |
title_sort |
Object detection with RetinaNet on aerial imagery: the Algarve landscape |
author |
Coelho, C. |
author_facet |
Coelho, C. Costa, M. Fernanda P. Ferrás, Luís Jorge Lima Soares, A. J. |
author_role |
author |
author2 |
Costa, M. Fernanda P. Ferrás, Luís Jorge Lima Soares, A. J. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Coelho, C. Costa, M. Fernanda P. Ferrás, Luís Jorge Lima Soares, A. J. |
dc.subject.por.fl_str_mv |
Computer vision Neural networks Deep learning Object detection RetinaNet Ciências Naturais::Matemáticas Science & Technology |
topic |
Computer vision Neural networks Deep learning Object detection RetinaNet Ciências Naturais::Matemáticas Science & Technology |
description |
This work presents a study of the different existing object detection algorithms and the implementation of a Deep Learning model capable of detecting swimming pools from satellite images. In order to obtain the best results for this particular task, the RetinaNet algorithm was chosen. The model was trained using a customised dataset from Kaggle and tested with a newly developed dataset containing aerial images of the Algarve landscape and a random dataset of images obtained from Google Maps. The performance of the trained model is discussed using several metrics. The model can be used by the authorities to detect illegal swimming pools in any region, especially in the Algarve region due to the high density of pools there. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-11 2021-09-11T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/75255 |
url |
http://hdl.handle.net/1822/75255 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Coelho C., Costa M.F.P., Ferrás L.L., Soares A.J. (2021) Object Detection with RetinaNet on Aerial Imagery: The Algarve Landscape. In: Gervasi O. et al. (eds) Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science, vol 12950. Springer, Cham. https://doi.org/10.1007/978-3-030-86960-1_35 978-3-030-86959-5 0302-9743 10.1007/978-3-030-86960-1_35 978-3-030-86960-1 https://link.springer.com/chapter/10.1007/978-3-030-86960-1_35 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595232558514176 |