Feedback Neural Network Based Orbital Trajectory Prediction

Detalhes bibliográficos
Autor(a) principal: Senra, Filipe Miguel Santa Maria
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.6/13958
Resumo: In recent years, the number of satellites and debris in space has dangerously increased. For this reason, it is indispensable that tracking and orbit prediction of these objects is performed with the highest level of accuracy. Currently, orbit prediction depends on mathematical models that describe the physics behind the movement of a certain object in space. However, at times, these models can limit the accuracy of the orbit prediction for being characterized by a high degree of complexity and non­linearity. On another note, the application of Machine Learning to the space sector has been increasing rapidly, being of interest to investigate its applicability in the field of orbit prediction. In the present dissertation, a Long Short­Term Memory (LSTM) neural network is designed and investigated. The obtained results are subsequently compared with the results obtained from an Extended Kalman Filter (EKF). With data from a two­line element (TLE) file belonging to the satellite STARLINK­1028, its orbit was propagated for 48h, producing 17281 state vectors that are utilized for training the neural network. A second data set was generated, where Gaussian noise with a distribution N(0, 100) was added. The purpose of this noisy data set is to represent the presence of errors caused by measurements and assess the robustness of the models. A neural network was developed using the Python language and the Tensorflow and Keras libraries, following a Multiple Inputs Single Output (MISO) approach. To test if the performance of the neural network increases the more data is available for training, three case studies were developed, where case studies A, B and C use 41.7%, 83.3% and 100% of the data set, respectively. The models were validated using a pragmatic validation and the more common validation, where it is shown that there are no signs of overfitting or underfitting. Results demonstrate that the models are robust when faced with noisy data and their performance increases with the size of the training set. However, despite the the neural network having been validated and exhibits low prediction errors, the Kalman filter achieved a better performance.
id RCAP_3f03cfaaf9a19fef51bed869cfe78848
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/13958
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Feedback Neural Network Based Orbital Trajectory PredictionDeep LearningFiltro de KalmanFiltro de Kalman ExtendidoLong Shortterm MemoryMachine LearningMecânica OrbitalPrevisão de ÓrbitaPropagação de ÓrbitaRede NeuronalSatélite LeoIn recent years, the number of satellites and debris in space has dangerously increased. For this reason, it is indispensable that tracking and orbit prediction of these objects is performed with the highest level of accuracy. Currently, orbit prediction depends on mathematical models that describe the physics behind the movement of a certain object in space. However, at times, these models can limit the accuracy of the orbit prediction for being characterized by a high degree of complexity and non­linearity. On another note, the application of Machine Learning to the space sector has been increasing rapidly, being of interest to investigate its applicability in the field of orbit prediction. In the present dissertation, a Long Short­Term Memory (LSTM) neural network is designed and investigated. The obtained results are subsequently compared with the results obtained from an Extended Kalman Filter (EKF). With data from a two­line element (TLE) file belonging to the satellite STARLINK­1028, its orbit was propagated for 48h, producing 17281 state vectors that are utilized for training the neural network. A second data set was generated, where Gaussian noise with a distribution N(0, 100) was added. The purpose of this noisy data set is to represent the presence of errors caused by measurements and assess the robustness of the models. A neural network was developed using the Python language and the Tensorflow and Keras libraries, following a Multiple Inputs Single Output (MISO) approach. To test if the performance of the neural network increases the more data is available for training, three case studies were developed, where case studies A, B and C use 41.7%, 83.3% and 100% of the data set, respectively. The models were validated using a pragmatic validation and the more common validation, where it is shown that there are no signs of overfitting or underfitting. Results demonstrate that the models are robust when faced with noisy data and their performance increases with the size of the training set. However, despite the the neural network having been validated and exhibits low prediction errors, the Kalman filter achieved a better performance.Nos últimos anos, o número de satélites e lixo espacial tem aumentado perigosamente. Com isto, é indispensável que a localização e previsão de órbita destes objetos seja feita com o maior nível de precisão. Atualmente, a previsão de órbitas depende de modelos matemáticos que descrevem a física por detrás do movimento de certo objecto no espaço. Contudo, por vezes, estes modelos podem limitar a precisão da previsão de órbita por serem caracterizados por um alto grau de complexidade e não linearidade. Por outro lado, a aplicação de Machine Learning no setor espacial tem vindo a aumentar rapidamente, sendo de interesse investigar a sua aplicabilidade na área de previsão de órbitas. Na presente dissertação, uma rede neuronal Long Short­Term Memory (LSTM) é projetada e investigada. Os resultados obtidos são posteriormente comparados com os resultados obtidos por um filtro de Kalman Extendido (EKF). Com recurso a dados provenientes de um ficheiro two­line element (TLE) referente ao satélite STARLINK­1028, a órbita deste foi propagada durante 48h, produzindo 17281 vetores de estado que são utilizados para treinar a rede neuronal. Um segundo data set foi gerado, onde ruído gaussiano com uma distribuição N(0, 100)foi adicionado. O propósito deste data set ruidoso é de retratar a presença de erros causados pelas medições e avaliar a robustez dos modelos. A rede neuronal foi desenvolvida com recurso à linguagem Python e às bibliotecas Tensorflow e Keras, tendo sido tomada uma abordagem Multiple Inputs Single Output (MISO). De forma a testar se a performance da rede neuronal aumenta consoante o aumento de dados disponíveis para treino, 3 casos de estudo foram criados, onde os casos de estudo A, B e C usam 41.7%, 83.3% e 100% do data set, respetivamente. Os modelos foram validados utilizando uma validação pragmática e a validação mais comum, onde se demonstra que não há sinais de overfitting ou underfitting. Resultados demonstram que os modelos são robustos face a dados ruidosos e a performance destes aumenta com o tamanho do training set. Contudo, apesar da rede neuronal ter sido validada e possuir baixos erros de previsão, o filtro de Kalman atingiu uma melhor performance.Bousson, KouamanauBibliorumSenra, Filipe Miguel Santa Maria2024-01-15T11:44:08Z2023-04-132023-01-312023-04-13T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/13958urn:tid:203462572enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-11T15:22:57Zoai:ubibliorum.ubi.pt:10400.6/13958Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T01:25:58.288333Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Feedback Neural Network Based Orbital Trajectory Prediction
title Feedback Neural Network Based Orbital Trajectory Prediction
spellingShingle Feedback Neural Network Based Orbital Trajectory Prediction
Senra, Filipe Miguel Santa Maria
Deep Learning
Filtro de Kalman
Filtro de Kalman Extendido
Long Shortterm Memory
Machine Learning
Mecânica Orbital
Previsão de Órbita
Propagação de Órbita
Rede Neuronal
Satélite Leo
title_short Feedback Neural Network Based Orbital Trajectory Prediction
title_full Feedback Neural Network Based Orbital Trajectory Prediction
title_fullStr Feedback Neural Network Based Orbital Trajectory Prediction
title_full_unstemmed Feedback Neural Network Based Orbital Trajectory Prediction
title_sort Feedback Neural Network Based Orbital Trajectory Prediction
author Senra, Filipe Miguel Santa Maria
author_facet Senra, Filipe Miguel Santa Maria
author_role author
dc.contributor.none.fl_str_mv Bousson, Kouamana
uBibliorum
dc.contributor.author.fl_str_mv Senra, Filipe Miguel Santa Maria
dc.subject.por.fl_str_mv Deep Learning
Filtro de Kalman
Filtro de Kalman Extendido
Long Shortterm Memory
Machine Learning
Mecânica Orbital
Previsão de Órbita
Propagação de Órbita
Rede Neuronal
Satélite Leo
topic Deep Learning
Filtro de Kalman
Filtro de Kalman Extendido
Long Shortterm Memory
Machine Learning
Mecânica Orbital
Previsão de Órbita
Propagação de Órbita
Rede Neuronal
Satélite Leo
description In recent years, the number of satellites and debris in space has dangerously increased. For this reason, it is indispensable that tracking and orbit prediction of these objects is performed with the highest level of accuracy. Currently, orbit prediction depends on mathematical models that describe the physics behind the movement of a certain object in space. However, at times, these models can limit the accuracy of the orbit prediction for being characterized by a high degree of complexity and non­linearity. On another note, the application of Machine Learning to the space sector has been increasing rapidly, being of interest to investigate its applicability in the field of orbit prediction. In the present dissertation, a Long Short­Term Memory (LSTM) neural network is designed and investigated. The obtained results are subsequently compared with the results obtained from an Extended Kalman Filter (EKF). With data from a two­line element (TLE) file belonging to the satellite STARLINK­1028, its orbit was propagated for 48h, producing 17281 state vectors that are utilized for training the neural network. A second data set was generated, where Gaussian noise with a distribution N(0, 100) was added. The purpose of this noisy data set is to represent the presence of errors caused by measurements and assess the robustness of the models. A neural network was developed using the Python language and the Tensorflow and Keras libraries, following a Multiple Inputs Single Output (MISO) approach. To test if the performance of the neural network increases the more data is available for training, three case studies were developed, where case studies A, B and C use 41.7%, 83.3% and 100% of the data set, respectively. The models were validated using a pragmatic validation and the more common validation, where it is shown that there are no signs of overfitting or underfitting. Results demonstrate that the models are robust when faced with noisy data and their performance increases with the size of the training set. However, despite the the neural network having been validated and exhibits low prediction errors, the Kalman filter achieved a better performance.
publishDate 2023
dc.date.none.fl_str_mv 2023-04-13
2023-01-31
2023-04-13T00:00:00Z
2024-01-15T11:44:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/13958
urn:tid:203462572
url http://hdl.handle.net/10400.6/13958
identifier_str_mv urn:tid:203462572
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600976991289344