Machine‐Learning Approaches to Tune Descriptors and Predict the Viscosities of Ionic Liquids and Their Mixtures
| Main Author: | |
|---|---|
| Publication Date: | 2021 |
| Other Authors: | |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10362/117268 |
Summary: | PTDC/EQU-EQU/30060/2017 UIDB/50006/2020 |
| id |
RCAP_3ba3a88985859c1ad1c0943e06a826d0 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/117268 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Machine‐Learning Approaches to Tune Descriptors and Predict the Viscosities of Ionic Liquids and Their Mixtureschemoinformaticsionic liquidsKohonen neural networkrandom forestviscosityElectrochemistrySpectroscopyCatalysisFluid Flow and Transfer ProcessesPTDC/EQU-EQU/30060/2017 UIDB/50006/2020This work consists on a new chemoinformatic approach based on two complementary artificial intelligence concepts. Random Forest and Kohonen neural network are applied on this context. The former provides a relevance measure of the numerical descriptors encoding either an ionic liquid or its mixtures. The code of a given chemical system is weighted according that relevance measure. The Kohonen neural network is trained with a set of weighted chemical systems. The next step comprises the use of the trained neural network as platform to obtain a tuned profile of numerical descriptors representing a generical chemical system. The tuning mechanism involves the topology of a chemical system‐encoding vector in the neural network. The last step comprises the use of the tuned chemical systems to build predictive models of viscosities. The MOLMAP encoding technology is applied to represent ionic liquid systems and its mixtures.LAQV@REQUIMTERUNCarrera, Gonçalo V. S. M.Nunes da Ponte, Manuel2021-05-06T22:43:47Z2021-052021-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article10application/pdfhttp://hdl.handle.net/10362/117268engPURE: 26884947https://doi.org/10.1002/cmtd.202000031info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-14T01:36:40Zoai:run.unl.pt:10362/117268Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:24:08.134164Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Machine‐Learning Approaches to Tune Descriptors and Predict the Viscosities of Ionic Liquids and Their Mixtures |
| title |
Machine‐Learning Approaches to Tune Descriptors and Predict the Viscosities of Ionic Liquids and Their Mixtures |
| spellingShingle |
Machine‐Learning Approaches to Tune Descriptors and Predict the Viscosities of Ionic Liquids and Their Mixtures Carrera, Gonçalo V. S. M. chemoinformatics ionic liquids Kohonen neural network random forest viscosity Electrochemistry Spectroscopy Catalysis Fluid Flow and Transfer Processes |
| title_short |
Machine‐Learning Approaches to Tune Descriptors and Predict the Viscosities of Ionic Liquids and Their Mixtures |
| title_full |
Machine‐Learning Approaches to Tune Descriptors and Predict the Viscosities of Ionic Liquids and Their Mixtures |
| title_fullStr |
Machine‐Learning Approaches to Tune Descriptors and Predict the Viscosities of Ionic Liquids and Their Mixtures |
| title_full_unstemmed |
Machine‐Learning Approaches to Tune Descriptors and Predict the Viscosities of Ionic Liquids and Their Mixtures |
| title_sort |
Machine‐Learning Approaches to Tune Descriptors and Predict the Viscosities of Ionic Liquids and Their Mixtures |
| author |
Carrera, Gonçalo V. S. M. |
| author_facet |
Carrera, Gonçalo V. S. M. Nunes da Ponte, Manuel |
| author_role |
author |
| author2 |
Nunes da Ponte, Manuel |
| author2_role |
author |
| dc.contributor.none.fl_str_mv |
LAQV@REQUIMTE RUN |
| dc.contributor.author.fl_str_mv |
Carrera, Gonçalo V. S. M. Nunes da Ponte, Manuel |
| dc.subject.por.fl_str_mv |
chemoinformatics ionic liquids Kohonen neural network random forest viscosity Electrochemistry Spectroscopy Catalysis Fluid Flow and Transfer Processes |
| topic |
chemoinformatics ionic liquids Kohonen neural network random forest viscosity Electrochemistry Spectroscopy Catalysis Fluid Flow and Transfer Processes |
| description |
PTDC/EQU-EQU/30060/2017 UIDB/50006/2020 |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-05-06T22:43:47Z 2021-05 2021-05-01T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/117268 |
| url |
http://hdl.handle.net/10362/117268 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
PURE: 26884947 https://doi.org/10.1002/cmtd.202000031 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
10 application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596669259677696 |