P6 CFD Modelling of Arterialized Venous Flap

Detalhes bibliográficos
Autor(a) principal: Serrano, Andreia de Jesus Grilo
Data de Publicação: 2020
Outros Autores: Casal, Diogo, O'Neill, João Goyri, Vassilenko, Valentina
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10362/127845
Resumo: The knowledge about the required quantity of blood to irrigate an angiosome is important on ischemia (disruption on blood perfusion) prediction, diagnosis and treatment. An angiosome (or flap) is an anatomic unity (or flap) of tissue, it is constituted by skin, subcutaneous tissue and muscle, it is irrigated by an artery and drain by specific veins [1]. Since 70’s, flaps have been used on clinical practice for reconstruction of complex anatomical structures. Different model configurations have been created, to find a flap’s model that allows a better flap perfusion. In previous work [2] the four models with an average flap survival area of 76.86% ± 13.67% were tested in 53 male rats: I - conventional model of flap’s blood supply formed by femoral and epigastric arteries; II – Arterialized Venous Flap (AVF) produced by femoral side-to-side anastomosis; III - AVF produced by femoral side-to-side anastomosis and proximal ligation of the femoral vein; IV - AVF produced by terminal lateral anastomosis of the epigastric vein to the femoral artery). The experimental results have shown that the AVFs in group IV represent an optimized model of unconventional perfusion flap. In the present work the Computational Fluid Dynamics (CFD) methods, an ANSYS®-Fluent code, were used for simulating a blood flow and flap perfusion in AVFs of group IV in order to find an optimum geometry for lateral anastomosis of the epigastric vein to the femoral artery with an angle variation from 90,0º to 45,0º. We find that the optimum angle is 86,5º. Three other models, conventional and unconventional, was also tested by CFD, finding that unconventional AVF of group III provides a greater blood flow through the epigastric vein, allowing a better perfusion of the flap.
id RCAP_3ad7152e679337f01952eec788e20461
oai_identifier_str oai:run.unl.pt:10362/127845
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling P6 CFD Modelling of Arterialized Venous FlapThe knowledge about the required quantity of blood to irrigate an angiosome is important on ischemia (disruption on blood perfusion) prediction, diagnosis and treatment. An angiosome (or flap) is an anatomic unity (or flap) of tissue, it is constituted by skin, subcutaneous tissue and muscle, it is irrigated by an artery and drain by specific veins [1]. Since 70’s, flaps have been used on clinical practice for reconstruction of complex anatomical structures. Different model configurations have been created, to find a flap’s model that allows a better flap perfusion. In previous work [2] the four models with an average flap survival area of 76.86% ± 13.67% were tested in 53 male rats: I - conventional model of flap’s blood supply formed by femoral and epigastric arteries; II – Arterialized Venous Flap (AVF) produced by femoral side-to-side anastomosis; III - AVF produced by femoral side-to-side anastomosis and proximal ligation of the femoral vein; IV - AVF produced by terminal lateral anastomosis of the epigastric vein to the femoral artery). The experimental results have shown that the AVFs in group IV represent an optimized model of unconventional perfusion flap. In the present work the Computational Fluid Dynamics (CFD) methods, an ANSYS®-Fluent code, were used for simulating a blood flow and flap perfusion in AVFs of group IV in order to find an optimum geometry for lateral anastomosis of the epigastric vein to the femoral artery with an angle variation from 90,0º to 45,0º. We find that the optimum angle is 86,5º. Three other models, conventional and unconventional, was also tested by CFD, finding that unconventional AVF of group III provides a greater blood flow through the epigastric vein, allowing a better perfusion of the flap.LIBPhys-UNLNOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)Centro de Estudos de Doenças Crónicas (CEDOC)RUNSerrano, Andreia de Jesus GriloCasal, DiogoO'Neill, João GoyriVassilenko, Valentina2021-11-16T23:40:03Z2020-02-152020-02-15T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10362/127845eng1876-4401PURE: 17976961https://doi.org/10.2991/artres.k.191224.041info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:57:13Zoai:run.unl.pt:10362/127845Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:28:12.060689Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv P6 CFD Modelling of Arterialized Venous Flap
title P6 CFD Modelling of Arterialized Venous Flap
spellingShingle P6 CFD Modelling of Arterialized Venous Flap
Serrano, Andreia de Jesus Grilo
title_short P6 CFD Modelling of Arterialized Venous Flap
title_full P6 CFD Modelling of Arterialized Venous Flap
title_fullStr P6 CFD Modelling of Arterialized Venous Flap
title_full_unstemmed P6 CFD Modelling of Arterialized Venous Flap
title_sort P6 CFD Modelling of Arterialized Venous Flap
author Serrano, Andreia de Jesus Grilo
author_facet Serrano, Andreia de Jesus Grilo
Casal, Diogo
O'Neill, João Goyri
Vassilenko, Valentina
author_role author
author2 Casal, Diogo
O'Neill, João Goyri
Vassilenko, Valentina
author2_role author
author
author
dc.contributor.none.fl_str_mv LIBPhys-UNL
NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)
Centro de Estudos de Doenças Crónicas (CEDOC)
RUN
dc.contributor.author.fl_str_mv Serrano, Andreia de Jesus Grilo
Casal, Diogo
O'Neill, João Goyri
Vassilenko, Valentina
description The knowledge about the required quantity of blood to irrigate an angiosome is important on ischemia (disruption on blood perfusion) prediction, diagnosis and treatment. An angiosome (or flap) is an anatomic unity (or flap) of tissue, it is constituted by skin, subcutaneous tissue and muscle, it is irrigated by an artery and drain by specific veins [1]. Since 70’s, flaps have been used on clinical practice for reconstruction of complex anatomical structures. Different model configurations have been created, to find a flap’s model that allows a better flap perfusion. In previous work [2] the four models with an average flap survival area of 76.86% ± 13.67% were tested in 53 male rats: I - conventional model of flap’s blood supply formed by femoral and epigastric arteries; II – Arterialized Venous Flap (AVF) produced by femoral side-to-side anastomosis; III - AVF produced by femoral side-to-side anastomosis and proximal ligation of the femoral vein; IV - AVF produced by terminal lateral anastomosis of the epigastric vein to the femoral artery). The experimental results have shown that the AVFs in group IV represent an optimized model of unconventional perfusion flap. In the present work the Computational Fluid Dynamics (CFD) methods, an ANSYS®-Fluent code, were used for simulating a blood flow and flap perfusion in AVFs of group IV in order to find an optimum geometry for lateral anastomosis of the epigastric vein to the femoral artery with an angle variation from 90,0º to 45,0º. We find that the optimum angle is 86,5º. Three other models, conventional and unconventional, was also tested by CFD, finding that unconventional AVF of group III provides a greater blood flow through the epigastric vein, allowing a better perfusion of the flap.
publishDate 2020
dc.date.none.fl_str_mv 2020-02-15
2020-02-15T00:00:00Z
2021-11-16T23:40:03Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/127845
url http://hdl.handle.net/10362/127845
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1876-4401
PURE: 17976961
https://doi.org/10.2991/artres.k.191224.041
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596718223982592