Minimization problems for certain structured matrices

Detalhes bibliográficos
Autor(a) principal: Zhongyun Liu
Data de Publicação: 2015
Outros Autores: Ralha, Rui, Zhang, Yulin, Ferreira, Carla
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/1822/37920
Resumo: For given $Z,B\in \mathbb{ C}^{n\times k}$, the problem of finding $A\in \mathbb{C}^{n\times n}$, in some prescribed class ${\cal W}$, that minimizes $\|AZ-B\|$ (Frobenius norm) has been considered by different authors for distinct classes ${\cal W}$. Here, we study this minimization problem for two other classes which include the symmetric Hamiltonian, symmetric skew-Hamiltonian, real orthogonal symplectic and unitary conjugate symplectic matrices. We also consider (as others have done for other classes ${\cal W}$) the problem of minimizing $\|A-\tilde{A}\|$ where $\tilde{A}$ is given and $A$ is a solution of the previous problem. The key idea of our contribution is the reduction of each one of the above minimization problems to two independent subproblems in orthogonal subspaces of $\mathbb{C}^{n\times n}$. This is possible due to the special structures under consideration. We have developed MATLAB codes and present the numerical results of some tests.
id RCAP_3a793ec13a5fbfe5df14ef76f461f9f7
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/37920
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Minimization problems for certain structured matricesLeast-squares approximationCentralizer of JMoore- Penrose inverseAnticentralizer of JCiências Naturais::MatemáticasScience & TechnologyFor given $Z,B\in \mathbb{ C}^{n\times k}$, the problem of finding $A\in \mathbb{C}^{n\times n}$, in some prescribed class ${\cal W}$, that minimizes $\|AZ-B\|$ (Frobenius norm) has been considered by different authors for distinct classes ${\cal W}$. Here, we study this minimization problem for two other classes which include the symmetric Hamiltonian, symmetric skew-Hamiltonian, real orthogonal symplectic and unitary conjugate symplectic matrices. We also consider (as others have done for other classes ${\cal W}$) the problem of minimizing $\|A-\tilde{A}\|$ where $\tilde{A}$ is given and $A$ is a solution of the previous problem. The key idea of our contribution is the reduction of each one of the above minimization problems to two independent subproblems in orthogonal subspaces of $\mathbb{C}^{n\times n}$. This is possible due to the special structures under consideration. We have developed MATLAB codes and present the numerical results of some tests.National Natural Science Foundation of China, no. 11371075.International Linear Algebra SocietyUniversidade do MinhoZhongyun LiuRalha, RuiZhang, YulinFerreira, Carla2015-102015-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/37920eng1081-381010.13001/1081-3810.3144http://repository.uwyo.edu/ela/info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T07:09:09Zoai:repositorium.sdum.uminho.pt:1822/37920Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:17:10.363885Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Minimization problems for certain structured matrices
title Minimization problems for certain structured matrices
spellingShingle Minimization problems for certain structured matrices
Zhongyun Liu
Least-squares approximation
Centralizer of J
Moore- Penrose inverse
Anticentralizer of J
Ciências Naturais::Matemáticas
Science & Technology
title_short Minimization problems for certain structured matrices
title_full Minimization problems for certain structured matrices
title_fullStr Minimization problems for certain structured matrices
title_full_unstemmed Minimization problems for certain structured matrices
title_sort Minimization problems for certain structured matrices
author Zhongyun Liu
author_facet Zhongyun Liu
Ralha, Rui
Zhang, Yulin
Ferreira, Carla
author_role author
author2 Ralha, Rui
Zhang, Yulin
Ferreira, Carla
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Zhongyun Liu
Ralha, Rui
Zhang, Yulin
Ferreira, Carla
dc.subject.por.fl_str_mv Least-squares approximation
Centralizer of J
Moore- Penrose inverse
Anticentralizer of J
Ciências Naturais::Matemáticas
Science & Technology
topic Least-squares approximation
Centralizer of J
Moore- Penrose inverse
Anticentralizer of J
Ciências Naturais::Matemáticas
Science & Technology
description For given $Z,B\in \mathbb{ C}^{n\times k}$, the problem of finding $A\in \mathbb{C}^{n\times n}$, in some prescribed class ${\cal W}$, that minimizes $\|AZ-B\|$ (Frobenius norm) has been considered by different authors for distinct classes ${\cal W}$. Here, we study this minimization problem for two other classes which include the symmetric Hamiltonian, symmetric skew-Hamiltonian, real orthogonal symplectic and unitary conjugate symplectic matrices. We also consider (as others have done for other classes ${\cal W}$) the problem of minimizing $\|A-\tilde{A}\|$ where $\tilde{A}$ is given and $A$ is a solution of the previous problem. The key idea of our contribution is the reduction of each one of the above minimization problems to two independent subproblems in orthogonal subspaces of $\mathbb{C}^{n\times n}$. This is possible due to the special structures under consideration. We have developed MATLAB codes and present the numerical results of some tests.
publishDate 2015
dc.date.none.fl_str_mv 2015-10
2015-10-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/37920
url http://hdl.handle.net/1822/37920
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1081-3810
10.13001/1081-3810.3144
http://repository.uwyo.edu/ela/
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv International Linear Algebra Society
publisher.none.fl_str_mv International Linear Algebra Society
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595853846085632