Detection of Forged Images Using a Combination of Passive Methods Based on Neural Networks

Bibliographic Details
Main Author: Alencar, Ancilon Leuch
Publication Date: 2024
Other Authors: Lopes, Marcelo Dornbusch, Fernandes , Anita Maria da Rocha, Anjos, Julio Cesar Santos dos, Santana, Juan Francisco De Paz, Leithardt, Valderi Reis Quietinho
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/172768
Summary: 2020/09706-7) São Paulo Research Foundation (FAPESP), FAPESP–MCTIC-CGI.BR in partnership with Hapvida NotreDame Intermedica Group. Publisher Copyright: © 2024 by the authors.
id RCAP_37e11bd9e4c015a12f5da7c60c675544
oai_identifier_str oai:run.unl.pt:10362/172768
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Detection of Forged Images Using a Combination of Passive Methods Based on Neural Networksconvolutional neural networkdeep learningdigital image forensicsComputer Networks and Communications2020/09706-7) São Paulo Research Foundation (FAPESP), FAPESP–MCTIC-CGI.BR in partnership with Hapvida NotreDame Intermedica Group. Publisher Copyright: © 2024 by the authors.In the current era of social media, the proliferation of images sourced from unreliable origins underscores the pressing need for robust methods to detect forged content, particularly amidst the rapid evolution of image manipulation technologies. Existing literature delineates two primary approaches to image manipulation detection: active and passive. Active techniques intervene preemptively, embedding structures into images to facilitate subsequent authenticity verification, whereas passive methods analyze image content for traces of manipulation. This study presents a novel solution to image manipulation detection by leveraging a multi-stream neural network architecture. Our approach harnesses three convolutional neural networks (CNNs) operating on distinct data streams extracted from the original image. We have developed a solution based on two passive detection methodologies. The system utilizes two separate streams to extract specific data subsets, while a third stream processes the unaltered image. Each net independently processes its respective data stream, capturing diverse facets of the image. The outputs from these nets are then fused through concatenation to ascertain whether the image has undergone manipulation, yielding a comprehensive detection framework surpassing the efficacy of its constituent methods. Our work introduces a unique dataset derived from the fusion of four publicly available datasets, featuring organically manipulated images that closely resemble real-world scenarios. This dataset offers a more authentic representation than other state-of-the-art methods that use algorithmically generated datasets based on image patches. By encompassing genuine manipulation scenarios, our dataset enhances the model’s ability to generalize across varied manipulation techniques, thereby improving its performance in real-world settings. After training, the merged approach obtained an accuracy of 89.59% in the set of validation images, significantly higher than the model trained with only unaltered images, which obtained 78.64%, and the two other models trained using images with a feature selection method applied to enhance inconsistencies that obtained 68.02% for Error-Level Analysis images and 50.70% for the method using Discrete Wavelet Transform. Moreover, our proposed approach exhibits reduced accuracy variance compared to alternative models, underscoring its stability and robustness across diverse datasets. The approach outlined in this work needs to provide information about the specific location or type of tempering, which limits its practical applications.CTS - Centro de Tecnologia e SistemasUNINOVA-Instituto de Desenvolvimento de Novas TecnologiasRUNAlencar, Ancilon LeuchLopes, Marcelo DornbuschFernandes , Anita Maria da RochaAnjos, Julio Cesar Santos dosSantana, Juan Francisco De PazLeithardt, Valderi Reis Quietinho2024-09-30T22:34:40Z2024-03-142024-03-14T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article20application/pdfhttp://hdl.handle.net/10362/172768eng1999-5903PURE: 100329222https://doi.org/10.3390/fi16030097info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-10-21T01:37:37Zoai:run.unl.pt:10362/172768Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:55:21.873505Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Detection of Forged Images Using a Combination of Passive Methods Based on Neural Networks
title Detection of Forged Images Using a Combination of Passive Methods Based on Neural Networks
spellingShingle Detection of Forged Images Using a Combination of Passive Methods Based on Neural Networks
Alencar, Ancilon Leuch
convolutional neural network
deep learning
digital image forensics
Computer Networks and Communications
title_short Detection of Forged Images Using a Combination of Passive Methods Based on Neural Networks
title_full Detection of Forged Images Using a Combination of Passive Methods Based on Neural Networks
title_fullStr Detection of Forged Images Using a Combination of Passive Methods Based on Neural Networks
title_full_unstemmed Detection of Forged Images Using a Combination of Passive Methods Based on Neural Networks
title_sort Detection of Forged Images Using a Combination of Passive Methods Based on Neural Networks
author Alencar, Ancilon Leuch
author_facet Alencar, Ancilon Leuch
Lopes, Marcelo Dornbusch
Fernandes , Anita Maria da Rocha
Anjos, Julio Cesar Santos dos
Santana, Juan Francisco De Paz
Leithardt, Valderi Reis Quietinho
author_role author
author2 Lopes, Marcelo Dornbusch
Fernandes , Anita Maria da Rocha
Anjos, Julio Cesar Santos dos
Santana, Juan Francisco De Paz
Leithardt, Valderi Reis Quietinho
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv CTS - Centro de Tecnologia e Sistemas
UNINOVA-Instituto de Desenvolvimento de Novas Tecnologias
RUN
dc.contributor.author.fl_str_mv Alencar, Ancilon Leuch
Lopes, Marcelo Dornbusch
Fernandes , Anita Maria da Rocha
Anjos, Julio Cesar Santos dos
Santana, Juan Francisco De Paz
Leithardt, Valderi Reis Quietinho
dc.subject.por.fl_str_mv convolutional neural network
deep learning
digital image forensics
Computer Networks and Communications
topic convolutional neural network
deep learning
digital image forensics
Computer Networks and Communications
description 2020/09706-7) São Paulo Research Foundation (FAPESP), FAPESP–MCTIC-CGI.BR in partnership with Hapvida NotreDame Intermedica Group. Publisher Copyright: © 2024 by the authors.
publishDate 2024
dc.date.none.fl_str_mv 2024-09-30T22:34:40Z
2024-03-14
2024-03-14T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/172768
url http://hdl.handle.net/10362/172768
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1999-5903
PURE: 100329222
https://doi.org/10.3390/fi16030097
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 20
application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597755724922880