Differential progression of coronary atherosclerosis according to plaque composition

Bibliographic Details
Main Author: Yoon, Yeonyee E.
Publication Date: 2021
Other Authors: Baskaran, Lohendran, Lee, Benjamin C., Pandey, Mohit Kumar, Goebel, Benjamin, Lee, Sang Eun, Sung, Ji Min, Andreini, Daniele, Al-Mallah, Mouaz H., Budoff, Matthew J., Cademartiri, Filippo, Chinnaiyan, Kavitha, Choi, Jung Hyun, Chun, Eun Ju, Conte, Edoardo, Gottlieb, Ilan, Hadamitzky, Martin, Kim, Yong Jin, Lee, Byoung Kwon, Leipsic, Jonathon A., Maffei, Erica, Pinto Marques, Hugo, de Araújo Gonçalves, Pedro, Pontone, Gianluca, Shin, Sanghoon, Narula, Jagat, Bax, Jeroen J., Lin, Fay Yu Huei, Shaw, Leslee, Chang, Hyuk Jae
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/124961
Summary: Patient-specific phenotyping of coronary atherosclerosis would facilitate personalized risk assessment and preventive treatment. We explored whether unsupervised cluster analysis can categorize patients with coronary atherosclerosis according to their plaque composition, and determined how these differing plaque composition profiles impact plaque progression. Patients with coronary atherosclerotic plaque (n = 947; median age, 62 years; 59% male) were enrolled from a prospective multi-national registry of consecutive patients who underwent serial coronary computed tomography angiography (median inter-scan duration, 3.3 years). K-means clustering applied to the percent volume of each plaque component and identified 4 clusters of patients with distinct plaque composition. Cluster 1 (n = 52), which comprised mainly fibro-fatty plaque with a significant necrotic core (median, 55.7% and 16.0% of the total plaque volume, respectively), showed the least total plaque volume (PV) progression (+ 23.3 mm3), with necrotic core and fibro-fatty PV regression (− 5.7 mm3 and − 5.6 mm3, respectively). Cluster 2 (n = 219), which contained largely fibro-fatty (39.2%) and fibrous plaque (46.8%), showed fibro-fatty PV regression (− 2.4 mm3). Cluster 3 (n = 376), which comprised mostly fibrous (62.7%) and calcified plaque (23.6%), showed increasingly prominent calcified PV progression (+ 21.4 mm3). Cluster 4 (n = 300), which comprised mostly calcified plaque (58.7%), demonstrated the greatest total PV increase (+ 50.7mm3), predominantly increasing in calcified PV (+ 35.9 mm3). Multivariable analysis showed higher risk for plaque progression in Clusters 3 and 4, and higher risk for adverse cardiac events in Clusters 2, 3, and 4 compared to that in Cluster 1. Unsupervised clustering algorithms may uniquely characterize patient phenotypes with varied atherosclerotic plaque profiles, yielding distinct patterns of progressive disease and outcome.
id RCAP_348ed3928b9b8110562b66f3a4acb98f
oai_identifier_str oai:run.unl.pt:10362/124961
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Differential progression of coronary atherosclerosis according to plaque compositiona cluster analysis of PARADIGM registry dataGeneralPatient-specific phenotyping of coronary atherosclerosis would facilitate personalized risk assessment and preventive treatment. We explored whether unsupervised cluster analysis can categorize patients with coronary atherosclerosis according to their plaque composition, and determined how these differing plaque composition profiles impact plaque progression. Patients with coronary atherosclerotic plaque (n = 947; median age, 62 years; 59% male) were enrolled from a prospective multi-national registry of consecutive patients who underwent serial coronary computed tomography angiography (median inter-scan duration, 3.3 years). K-means clustering applied to the percent volume of each plaque component and identified 4 clusters of patients with distinct plaque composition. Cluster 1 (n = 52), which comprised mainly fibro-fatty plaque with a significant necrotic core (median, 55.7% and 16.0% of the total plaque volume, respectively), showed the least total plaque volume (PV) progression (+ 23.3 mm3), with necrotic core and fibro-fatty PV regression (− 5.7 mm3 and − 5.6 mm3, respectively). Cluster 2 (n = 219), which contained largely fibro-fatty (39.2%) and fibrous plaque (46.8%), showed fibro-fatty PV regression (− 2.4 mm3). Cluster 3 (n = 376), which comprised mostly fibrous (62.7%) and calcified plaque (23.6%), showed increasingly prominent calcified PV progression (+ 21.4 mm3). Cluster 4 (n = 300), which comprised mostly calcified plaque (58.7%), demonstrated the greatest total PV increase (+ 50.7mm3), predominantly increasing in calcified PV (+ 35.9 mm3). Multivariable analysis showed higher risk for plaque progression in Clusters 3 and 4, and higher risk for adverse cardiac events in Clusters 2, 3, and 4 compared to that in Cluster 1. Unsupervised clustering algorithms may uniquely characterize patient phenotypes with varied atherosclerotic plaque profiles, yielding distinct patterns of progressive disease and outcome.NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)RUNYoon, Yeonyee E.Baskaran, LohendranLee, Benjamin C.Pandey, Mohit KumarGoebel, BenjaminLee, Sang EunSung, Ji MinAndreini, DanieleAl-Mallah, Mouaz H.Budoff, Matthew J.Cademartiri, FilippoChinnaiyan, KavithaChoi, Jung HyunChun, Eun JuConte, EdoardoGottlieb, IlanHadamitzky, MartinKim, Yong JinLee, Byoung KwonLeipsic, Jonathon A.Maffei, EricaPinto Marques, Hugode Araújo Gonçalves, PedroPontone, GianlucaShin, SanghoonNarula, JagatBax, Jeroen J.Lin, Fay Yu HueiShaw, LesleeChang, Hyuk Jae2021-09-22T02:13:38Z2021-122021-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/124961eng2045-2322PURE: 33726454https://doi.org/10.1038/s41598-021-96616-winfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-10-21T01:36:10Zoai:run.unl.pt:10362/124961Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:27:30.560596Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Differential progression of coronary atherosclerosis according to plaque composition
a cluster analysis of PARADIGM registry data
title Differential progression of coronary atherosclerosis according to plaque composition
spellingShingle Differential progression of coronary atherosclerosis according to plaque composition
Yoon, Yeonyee E.
General
title_short Differential progression of coronary atherosclerosis according to plaque composition
title_full Differential progression of coronary atherosclerosis according to plaque composition
title_fullStr Differential progression of coronary atherosclerosis according to plaque composition
title_full_unstemmed Differential progression of coronary atherosclerosis according to plaque composition
title_sort Differential progression of coronary atherosclerosis according to plaque composition
author Yoon, Yeonyee E.
author_facet Yoon, Yeonyee E.
Baskaran, Lohendran
Lee, Benjamin C.
Pandey, Mohit Kumar
Goebel, Benjamin
Lee, Sang Eun
Sung, Ji Min
Andreini, Daniele
Al-Mallah, Mouaz H.
Budoff, Matthew J.
Cademartiri, Filippo
Chinnaiyan, Kavitha
Choi, Jung Hyun
Chun, Eun Ju
Conte, Edoardo
Gottlieb, Ilan
Hadamitzky, Martin
Kim, Yong Jin
Lee, Byoung Kwon
Leipsic, Jonathon A.
Maffei, Erica
Pinto Marques, Hugo
de Araújo Gonçalves, Pedro
Pontone, Gianluca
Shin, Sanghoon
Narula, Jagat
Bax, Jeroen J.
Lin, Fay Yu Huei
Shaw, Leslee
Chang, Hyuk Jae
author_role author
author2 Baskaran, Lohendran
Lee, Benjamin C.
Pandey, Mohit Kumar
Goebel, Benjamin
Lee, Sang Eun
Sung, Ji Min
Andreini, Daniele
Al-Mallah, Mouaz H.
Budoff, Matthew J.
Cademartiri, Filippo
Chinnaiyan, Kavitha
Choi, Jung Hyun
Chun, Eun Ju
Conte, Edoardo
Gottlieb, Ilan
Hadamitzky, Martin
Kim, Yong Jin
Lee, Byoung Kwon
Leipsic, Jonathon A.
Maffei, Erica
Pinto Marques, Hugo
de Araújo Gonçalves, Pedro
Pontone, Gianluca
Shin, Sanghoon
Narula, Jagat
Bax, Jeroen J.
Lin, Fay Yu Huei
Shaw, Leslee
Chang, Hyuk Jae
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)
RUN
dc.contributor.author.fl_str_mv Yoon, Yeonyee E.
Baskaran, Lohendran
Lee, Benjamin C.
Pandey, Mohit Kumar
Goebel, Benjamin
Lee, Sang Eun
Sung, Ji Min
Andreini, Daniele
Al-Mallah, Mouaz H.
Budoff, Matthew J.
Cademartiri, Filippo
Chinnaiyan, Kavitha
Choi, Jung Hyun
Chun, Eun Ju
Conte, Edoardo
Gottlieb, Ilan
Hadamitzky, Martin
Kim, Yong Jin
Lee, Byoung Kwon
Leipsic, Jonathon A.
Maffei, Erica
Pinto Marques, Hugo
de Araújo Gonçalves, Pedro
Pontone, Gianluca
Shin, Sanghoon
Narula, Jagat
Bax, Jeroen J.
Lin, Fay Yu Huei
Shaw, Leslee
Chang, Hyuk Jae
dc.subject.por.fl_str_mv General
topic General
description Patient-specific phenotyping of coronary atherosclerosis would facilitate personalized risk assessment and preventive treatment. We explored whether unsupervised cluster analysis can categorize patients with coronary atherosclerosis according to their plaque composition, and determined how these differing plaque composition profiles impact plaque progression. Patients with coronary atherosclerotic plaque (n = 947; median age, 62 years; 59% male) were enrolled from a prospective multi-national registry of consecutive patients who underwent serial coronary computed tomography angiography (median inter-scan duration, 3.3 years). K-means clustering applied to the percent volume of each plaque component and identified 4 clusters of patients with distinct plaque composition. Cluster 1 (n = 52), which comprised mainly fibro-fatty plaque with a significant necrotic core (median, 55.7% and 16.0% of the total plaque volume, respectively), showed the least total plaque volume (PV) progression (+ 23.3 mm3), with necrotic core and fibro-fatty PV regression (− 5.7 mm3 and − 5.6 mm3, respectively). Cluster 2 (n = 219), which contained largely fibro-fatty (39.2%) and fibrous plaque (46.8%), showed fibro-fatty PV regression (− 2.4 mm3). Cluster 3 (n = 376), which comprised mostly fibrous (62.7%) and calcified plaque (23.6%), showed increasingly prominent calcified PV progression (+ 21.4 mm3). Cluster 4 (n = 300), which comprised mostly calcified plaque (58.7%), demonstrated the greatest total PV increase (+ 50.7mm3), predominantly increasing in calcified PV (+ 35.9 mm3). Multivariable analysis showed higher risk for plaque progression in Clusters 3 and 4, and higher risk for adverse cardiac events in Clusters 2, 3, and 4 compared to that in Cluster 1. Unsupervised clustering algorithms may uniquely characterize patient phenotypes with varied atherosclerotic plaque profiles, yielding distinct patterns of progressive disease and outcome.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-22T02:13:38Z
2021-12
2021-12-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/124961
url http://hdl.handle.net/10362/124961
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2045-2322
PURE: 33726454
https://doi.org/10.1038/s41598-021-96616-w
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596707298869248