Quality control in clothing manufacturing with machine learning

Detalhes bibliográficos
Autor(a) principal: San-Payo, Gonçalo Laginha Serafim
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10071/17782
Resumo: Quality control is vital for business and machine learning has proven to be successful in this type of area. In this work we propose and develop a classification model to be used in a quality control system for clothing manufacturing using machine learning. The system consists of using pictures taken through mobile devices to detect defects on clothing items. A defect can be a missing component or a wrong component in a clothing item. Therefore, the function of system is to classify the objects that compose a clothing item through the use of a classification model. As a manufacturing business progresses, new objects are created, thus, the classification model must be able to learn the new classes without losing previous knowledge. However, most classification algorithms do not support an increase of classes, these need to be trained from scratch with all classes. In this work, we make use of an incremental learning algorithm to tackle this problem. This algorithm classifies features extracted from pictures of the clothing items using a convolutional neural network (CNN), which have proven to be very successfully in image classification problems. As the result of this work, we have developed a quality control system that combines a mobile application to take pictures of clothing items and a server that performs defect detection processes using an accurate image classification model capable of increasing its knowledge from new unseen data. This system can help factories improve their quality control processes.
id RCAP_32ea6cc16e7c012553fc6a7de5544d6d
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/17782
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Quality control in clothing manufacturing with machine learningQuality controlIncremental learningImage classificationEngenharia de telecomunicaçõesProcessos de fabricoVestuárioControlo da qualidadeAprendizagemClassificaçãoImagemQuality control is vital for business and machine learning has proven to be successful in this type of area. In this work we propose and develop a classification model to be used in a quality control system for clothing manufacturing using machine learning. The system consists of using pictures taken through mobile devices to detect defects on clothing items. A defect can be a missing component or a wrong component in a clothing item. Therefore, the function of system is to classify the objects that compose a clothing item through the use of a classification model. As a manufacturing business progresses, new objects are created, thus, the classification model must be able to learn the new classes without losing previous knowledge. However, most classification algorithms do not support an increase of classes, these need to be trained from scratch with all classes. In this work, we make use of an incremental learning algorithm to tackle this problem. This algorithm classifies features extracted from pictures of the clothing items using a convolutional neural network (CNN), which have proven to be very successfully in image classification problems. As the result of this work, we have developed a quality control system that combines a mobile application to take pictures of clothing items and a server that performs defect detection processes using an accurate image classification model capable of increasing its knowledge from new unseen data. This system can help factories improve their quality control processes.O controlo de qualidade é vital para um negócio e a aprendizagem automática tem provado ser bem-sucedida neste tipo de área. Neste trabalho propomos e desenvolvemos um sistema de controlo de qualidade para o fabrico de roupas utilizando aprendizagem automática. O sistema consiste em usar fotografias, tiradas através de dispositivos móveis, para detetar defeitos em peças de roupa. Um defeito pode ser a falta de um componente ou um componente errado numa peça de roupa. A função do sistema é, portanto, classificar os objetos que compõem uma peça de roupa através do uso de um modelo de classificação. À medida que um negócio fabril progride, novos objetos são criados, assim, o modelo de classificação deve ser capaz de aprender as novas classes sem perder conhecimento prévio. No entanto, a maioria dos algoritmos de classificação não suporta um aumento de classes, estes precisam ser treinados a partir do zero com todas as classes. Neste trabalho, utilizamos um algoritmo que suporta aprendizagem incremental para resolver este problema. Este algoritmo classifica características extraídas de imagens das peças de roupa usando uma rede neural convolucional, que tem provado ser uma técnica muito bem sucedida no que toca a resolver problemas de classificação de imagem. Como resultado deste trabalho, desenvolvemos um sistema de controlo de qualidade que combina uma aplicação móvel para tirar fotografias de peças de roupa e um servidor que executa os processos de deteção de defeitos usando um modelo de classificação de imagens preciso, capaz de aumentar o seu conhecimento a partir de novos dados nunca antes vistos. Este sistema pode ajudar as fábricas a melhorar seus processos de controlo de qualidade.2019-04-02T12:59:39Z2018-12-05T00:00:00Z2018-12-052018-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/17782TID:202127494engSan-Payo, Gonçalo Laginha Serafiminfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:28:24Zoai:repositorio.iscte-iul.pt:10071/17782Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:24:37.225979Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Quality control in clothing manufacturing with machine learning
title Quality control in clothing manufacturing with machine learning
spellingShingle Quality control in clothing manufacturing with machine learning
San-Payo, Gonçalo Laginha Serafim
Quality control
Incremental learning
Image classification
Engenharia de telecomunicações
Processos de fabrico
Vestuário
Controlo da qualidade
Aprendizagem
Classificação
Imagem
title_short Quality control in clothing manufacturing with machine learning
title_full Quality control in clothing manufacturing with machine learning
title_fullStr Quality control in clothing manufacturing with machine learning
title_full_unstemmed Quality control in clothing manufacturing with machine learning
title_sort Quality control in clothing manufacturing with machine learning
author San-Payo, Gonçalo Laginha Serafim
author_facet San-Payo, Gonçalo Laginha Serafim
author_role author
dc.contributor.author.fl_str_mv San-Payo, Gonçalo Laginha Serafim
dc.subject.por.fl_str_mv Quality control
Incremental learning
Image classification
Engenharia de telecomunicações
Processos de fabrico
Vestuário
Controlo da qualidade
Aprendizagem
Classificação
Imagem
topic Quality control
Incremental learning
Image classification
Engenharia de telecomunicações
Processos de fabrico
Vestuário
Controlo da qualidade
Aprendizagem
Classificação
Imagem
description Quality control is vital for business and machine learning has proven to be successful in this type of area. In this work we propose and develop a classification model to be used in a quality control system for clothing manufacturing using machine learning. The system consists of using pictures taken through mobile devices to detect defects on clothing items. A defect can be a missing component or a wrong component in a clothing item. Therefore, the function of system is to classify the objects that compose a clothing item through the use of a classification model. As a manufacturing business progresses, new objects are created, thus, the classification model must be able to learn the new classes without losing previous knowledge. However, most classification algorithms do not support an increase of classes, these need to be trained from scratch with all classes. In this work, we make use of an incremental learning algorithm to tackle this problem. This algorithm classifies features extracted from pictures of the clothing items using a convolutional neural network (CNN), which have proven to be very successfully in image classification problems. As the result of this work, we have developed a quality control system that combines a mobile application to take pictures of clothing items and a server that performs defect detection processes using an accurate image classification model capable of increasing its knowledge from new unseen data. This system can help factories improve their quality control processes.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-05T00:00:00Z
2018-12-05
2018-10
2019-04-02T12:59:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/17782
TID:202127494
url http://hdl.handle.net/10071/17782
identifier_str_mv TID:202127494
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/octet-stream
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597392419553280