Molecular Dynamics Study of Self-Assembly of Aqueous Solutions of Poly[9,9-bis(4-Sulfonylbutoxyphenylphenyl) Fluorene-2,7-diyl-2,2'-Bithiophene] (PBS-PF2T) in the Presence of Pentaethylene Glycol Monododecyl Ether (C12E₅)

Bibliographic Details
Main Author: Stewart, Beverly
Publication Date: 2016
Other Authors: Burrows, Hugh Douglas
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/108700
https://doi.org/10.3390/ma9050379
Summary: Results are presented using molecular dynamics (MD) of the self-assembly of the conjugated polyelectrolyte poly[9,9-bis(4-sulfonylbutoxyphenylphenyl) fluorene-2,7-diyl-2,2'-bithiophene] (PBS-PF2T) with 680 mM pentaethylene glycol monododecyl ether (C12E₅) in water. Simulations are used to examine the interaction between PBS-PF2T and C12E₅ and suggest a break-up of PBS-PF2T aggregates in solution. These systems are dominated by the formation of cylindrical phases at temperatures between 0 °C and 20 °C and also between 45 °C and 90 °C. More diffuse phases are seen to occur between 20 °C and 45 °C and also above 90 °C. Simulations are related to previous computational and experimental studies on PBS-PF2T aggregation in the presence of tetraethylene glycol monododecyl ether (C12E₄) in bulk and thin films.
id RCAP_30ff1d9f521e389a58163fc8bcf037ba
oai_identifier_str oai:estudogeral.uc.pt:10316/108700
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Molecular Dynamics Study of Self-Assembly of Aqueous Solutions of Poly[9,9-bis(4-Sulfonylbutoxyphenylphenyl) Fluorene-2,7-diyl-2,2'-Bithiophene] (PBS-PF2T) in the Presence of Pentaethylene Glycol Monododecyl Ether (C12E₅)molecular dynamics simulationconjugated polyelectrolytesnonionic surfactantphase formationtemperature dependenceResults are presented using molecular dynamics (MD) of the self-assembly of the conjugated polyelectrolyte poly[9,9-bis(4-sulfonylbutoxyphenylphenyl) fluorene-2,7-diyl-2,2'-bithiophene] (PBS-PF2T) with 680 mM pentaethylene glycol monododecyl ether (C12E₅) in water. Simulations are used to examine the interaction between PBS-PF2T and C12E₅ and suggest a break-up of PBS-PF2T aggregates in solution. These systems are dominated by the formation of cylindrical phases at temperatures between 0 °C and 20 °C and also between 45 °C and 90 °C. More diffuse phases are seen to occur between 20 °C and 45 °C and also above 90 °C. Simulations are related to previous computational and experimental studies on PBS-PF2T aggregation in the presence of tetraethylene glycol monododecyl ether (C12E₄) in bulk and thin films.MDPI2016-05-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/108700https://hdl.handle.net/10316/108700https://doi.org/10.3390/ma9050379eng1996-1944Stewart, BeverlyBurrows, Hugh Douglasinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2023-09-08T10:08:20Zoai:estudogeral.uc.pt:10316/108700Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:00:04.047848Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Molecular Dynamics Study of Self-Assembly of Aqueous Solutions of Poly[9,9-bis(4-Sulfonylbutoxyphenylphenyl) Fluorene-2,7-diyl-2,2'-Bithiophene] (PBS-PF2T) in the Presence of Pentaethylene Glycol Monododecyl Ether (C12E₅)
title Molecular Dynamics Study of Self-Assembly of Aqueous Solutions of Poly[9,9-bis(4-Sulfonylbutoxyphenylphenyl) Fluorene-2,7-diyl-2,2'-Bithiophene] (PBS-PF2T) in the Presence of Pentaethylene Glycol Monododecyl Ether (C12E₅)
spellingShingle Molecular Dynamics Study of Self-Assembly of Aqueous Solutions of Poly[9,9-bis(4-Sulfonylbutoxyphenylphenyl) Fluorene-2,7-diyl-2,2'-Bithiophene] (PBS-PF2T) in the Presence of Pentaethylene Glycol Monododecyl Ether (C12E₅)
Stewart, Beverly
molecular dynamics simulation
conjugated polyelectrolytes
nonionic surfactant
phase formation
temperature dependence
title_short Molecular Dynamics Study of Self-Assembly of Aqueous Solutions of Poly[9,9-bis(4-Sulfonylbutoxyphenylphenyl) Fluorene-2,7-diyl-2,2'-Bithiophene] (PBS-PF2T) in the Presence of Pentaethylene Glycol Monododecyl Ether (C12E₅)
title_full Molecular Dynamics Study of Self-Assembly of Aqueous Solutions of Poly[9,9-bis(4-Sulfonylbutoxyphenylphenyl) Fluorene-2,7-diyl-2,2'-Bithiophene] (PBS-PF2T) in the Presence of Pentaethylene Glycol Monododecyl Ether (C12E₅)
title_fullStr Molecular Dynamics Study of Self-Assembly of Aqueous Solutions of Poly[9,9-bis(4-Sulfonylbutoxyphenylphenyl) Fluorene-2,7-diyl-2,2'-Bithiophene] (PBS-PF2T) in the Presence of Pentaethylene Glycol Monododecyl Ether (C12E₅)
title_full_unstemmed Molecular Dynamics Study of Self-Assembly of Aqueous Solutions of Poly[9,9-bis(4-Sulfonylbutoxyphenylphenyl) Fluorene-2,7-diyl-2,2'-Bithiophene] (PBS-PF2T) in the Presence of Pentaethylene Glycol Monododecyl Ether (C12E₅)
title_sort Molecular Dynamics Study of Self-Assembly of Aqueous Solutions of Poly[9,9-bis(4-Sulfonylbutoxyphenylphenyl) Fluorene-2,7-diyl-2,2'-Bithiophene] (PBS-PF2T) in the Presence of Pentaethylene Glycol Monododecyl Ether (C12E₅)
author Stewart, Beverly
author_facet Stewart, Beverly
Burrows, Hugh Douglas
author_role author
author2 Burrows, Hugh Douglas
author2_role author
dc.contributor.author.fl_str_mv Stewart, Beverly
Burrows, Hugh Douglas
dc.subject.por.fl_str_mv molecular dynamics simulation
conjugated polyelectrolytes
nonionic surfactant
phase formation
temperature dependence
topic molecular dynamics simulation
conjugated polyelectrolytes
nonionic surfactant
phase formation
temperature dependence
description Results are presented using molecular dynamics (MD) of the self-assembly of the conjugated polyelectrolyte poly[9,9-bis(4-sulfonylbutoxyphenylphenyl) fluorene-2,7-diyl-2,2'-bithiophene] (PBS-PF2T) with 680 mM pentaethylene glycol monododecyl ether (C12E₅) in water. Simulations are used to examine the interaction between PBS-PF2T and C12E₅ and suggest a break-up of PBS-PF2T aggregates in solution. These systems are dominated by the formation of cylindrical phases at temperatures between 0 °C and 20 °C and also between 45 °C and 90 °C. More diffuse phases are seen to occur between 20 °C and 45 °C and also above 90 °C. Simulations are related to previous computational and experimental studies on PBS-PF2T aggregation in the presence of tetraethylene glycol monododecyl ether (C12E₄) in bulk and thin films.
publishDate 2016
dc.date.none.fl_str_mv 2016-05-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/108700
https://hdl.handle.net/10316/108700
https://doi.org/10.3390/ma9050379
url https://hdl.handle.net/10316/108700
https://doi.org/10.3390/ma9050379
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1996-1944
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602544016818176