Static Analysis for Detection of Defects in Machine Learning Pipelines
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10400.5/97300 |
Resumo: | Tese de mestrado, Engenharia Informática, 2024, Universidade de Lisboa, Faculdade de Ciências |
| id |
RCAP_2fff03a0082867dd9304c2757f65d1a2 |
|---|---|
| oai_identifier_str |
oai:repositorio.ulisboa.pt:10400.5/97300 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Static Analysis for Detection of Defects in Machine Learning PipelinesVerificação EstáticaLinguagem Específica de DomínioAprendizagem AutomáticaPipelineEspecificação FormalTeses de mestrado - 2024Departamento de InformáticaTese de mestrado, Engenharia Informática, 2024, Universidade de Lisboa, Faculdade de CiênciasMachine Learning is becoming ubiquitous, with its techniques finding usage in every part of society. We are now witnessing an explosion in ML-based tools, such as the popular ChatGPT, made possible by advances in hardware that enable large-scale data processing. Most importantly, the rise of Machine Learning is related to the release of multiple frameworks and libraries that abstract its complexities, thus increasing its accessibility. These tools are used to implement the pipelines that automate the necessary workflow to create an ML mode, from data preprocessing to model learning and evaluation. However, these pipelines can contain domain-specific defects that are not trivial to be found by looking at the code. These defects are caused by flawed methodologies related to the semantics of pipeline components, data or other concepts specific to data science. An example of such a defect is the incorrect handling of time-series data when building datasets, such as shuffling time-series instances before the train/test splitting. Semantic defects are difficult to detect and prevent, reaching production silently, thus causing training-serving skew. Unfortunately, unlike typical software development, pipeline testing is not feasible, forcing us to explore alternatives. With a focus on supervised machine learning, this work identified relevant semantic defects, resorting to the community of ML developers, data scientists, and the academic and grey literature. To tackle the defects, we developed a domain-specific language capable of describing pipeline structure and the properties of its components and data sources. We also created a static analyser to automate defect detection in pipelines specified using the DSL. The verification process relies on the formal specification of pipeline components. We modelled pipelines containing the relevant defects we identified to evaluate the solution. The solution successfully detected all the defects present in the pipelines.Fonseca, Alcides Miguel Cachulo AguiarLopes, Maria Antónia Bacelar da Costa, 1968-Repositório da Universidade de LisboaSilva, Pedro Miguel Alcântara da2025-01-17T12:48:25Z202420242024-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.5/97300TID:203875524enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-17T16:32:05Zoai:repositorio.ulisboa.pt:10400.5/97300Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T04:18:29.618465Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Static Analysis for Detection of Defects in Machine Learning Pipelines |
| title |
Static Analysis for Detection of Defects in Machine Learning Pipelines |
| spellingShingle |
Static Analysis for Detection of Defects in Machine Learning Pipelines Silva, Pedro Miguel Alcântara da Verificação Estática Linguagem Específica de Domínio Aprendizagem Automática Pipeline Especificação Formal Teses de mestrado - 2024 Departamento de Informática |
| title_short |
Static Analysis for Detection of Defects in Machine Learning Pipelines |
| title_full |
Static Analysis for Detection of Defects in Machine Learning Pipelines |
| title_fullStr |
Static Analysis for Detection of Defects in Machine Learning Pipelines |
| title_full_unstemmed |
Static Analysis for Detection of Defects in Machine Learning Pipelines |
| title_sort |
Static Analysis for Detection of Defects in Machine Learning Pipelines |
| author |
Silva, Pedro Miguel Alcântara da |
| author_facet |
Silva, Pedro Miguel Alcântara da |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Fonseca, Alcides Miguel Cachulo Aguiar Lopes, Maria Antónia Bacelar da Costa, 1968- Repositório da Universidade de Lisboa |
| dc.contributor.author.fl_str_mv |
Silva, Pedro Miguel Alcântara da |
| dc.subject.por.fl_str_mv |
Verificação Estática Linguagem Específica de Domínio Aprendizagem Automática Pipeline Especificação Formal Teses de mestrado - 2024 Departamento de Informática |
| topic |
Verificação Estática Linguagem Específica de Domínio Aprendizagem Automática Pipeline Especificação Formal Teses de mestrado - 2024 Departamento de Informática |
| description |
Tese de mestrado, Engenharia Informática, 2024, Universidade de Lisboa, Faculdade de Ciências |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024 2024 2024-01-01T00:00:00Z 2025-01-17T12:48:25Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/97300 TID:203875524 |
| url |
http://hdl.handle.net/10400.5/97300 |
| identifier_str_mv |
TID:203875524 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833602013376544768 |