Short-term Feature Space and Music Genre Classification

Detalhes bibliográficos
Autor(a) principal: Marques, Gonçalo
Data de Publicação: 2011
Outros Autores: Langlois, Thibault, Gouyon, Fabien, Lopes, Miguel, Sordo, Mohamed
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.21/2238
Resumo: In music genre classification, most approaches rely on statistical characteristics of low-level features computed on short audio frames. In these methods, it is implicitly considered that frames carry equally relevant information loads and that either individual frames, or distributions thereof, somehow capture the specificities of each genre. In this paper we study the representation space defined by short-term audio features with respect to class boundaries, and compare different processing techniques to partition this space. These partitions are evaluated in terms of accuracy on two genre classification tasks, with several types of classifiers. Experiments show that a randomized and unsupervised partition of the space, used in conjunction with a Markov Model classifier lead to accuracies comparable to the state of the art. We also show that unsupervised partitions of the space tend to create less hubs.
id RCAP_29d8d5e2d6b533d05a609a23a02b1d53
oai_identifier_str oai:repositorio.ipl.pt:10400.21/2238
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Short-term Feature Space and Music Genre ClassificationShort-term Feature SpaceMusic Genre ClassificationIn music genre classification, most approaches rely on statistical characteristics of low-level features computed on short audio frames. In these methods, it is implicitly considered that frames carry equally relevant information loads and that either individual frames, or distributions thereof, somehow capture the specificities of each genre. In this paper we study the representation space defined by short-term audio features with respect to class boundaries, and compare different processing techniques to partition this space. These partitions are evaluated in terms of accuracy on two genre classification tasks, with several types of classifiers. Experiments show that a randomized and unsupervised partition of the space, used in conjunction with a Markov Model classifier lead to accuracies comparable to the state of the art. We also show that unsupervised partitions of the space tend to create less hubs.Routledge JournalsRCIPLMarques, GonçaloLanglois, ThibaultGouyon, FabienLopes, MiguelSordo, Mohamed2013-02-16T18:33:09Z20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/2238eng0929-8215info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-12T09:33:51Zoai:repositorio.ipl.pt:10400.21/2238Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:01:51.207568Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Short-term Feature Space and Music Genre Classification
title Short-term Feature Space and Music Genre Classification
spellingShingle Short-term Feature Space and Music Genre Classification
Marques, Gonçalo
Short-term Feature Space
Music Genre Classification
title_short Short-term Feature Space and Music Genre Classification
title_full Short-term Feature Space and Music Genre Classification
title_fullStr Short-term Feature Space and Music Genre Classification
title_full_unstemmed Short-term Feature Space and Music Genre Classification
title_sort Short-term Feature Space and Music Genre Classification
author Marques, Gonçalo
author_facet Marques, Gonçalo
Langlois, Thibault
Gouyon, Fabien
Lopes, Miguel
Sordo, Mohamed
author_role author
author2 Langlois, Thibault
Gouyon, Fabien
Lopes, Miguel
Sordo, Mohamed
author2_role author
author
author
author
dc.contributor.none.fl_str_mv RCIPL
dc.contributor.author.fl_str_mv Marques, Gonçalo
Langlois, Thibault
Gouyon, Fabien
Lopes, Miguel
Sordo, Mohamed
dc.subject.por.fl_str_mv Short-term Feature Space
Music Genre Classification
topic Short-term Feature Space
Music Genre Classification
description In music genre classification, most approaches rely on statistical characteristics of low-level features computed on short audio frames. In these methods, it is implicitly considered that frames carry equally relevant information loads and that either individual frames, or distributions thereof, somehow capture the specificities of each genre. In this paper we study the representation space defined by short-term audio features with respect to class boundaries, and compare different processing techniques to partition this space. These partitions are evaluated in terms of accuracy on two genre classification tasks, with several types of classifiers. Experiments show that a randomized and unsupervised partition of the space, used in conjunction with a Markov Model classifier lead to accuracies comparable to the state of the art. We also show that unsupervised partitions of the space tend to create less hubs.
publishDate 2011
dc.date.none.fl_str_mv 2011
2011-01-01T00:00:00Z
2013-02-16T18:33:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.21/2238
url http://hdl.handle.net/10400.21/2238
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0929-8215
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Routledge Journals
publisher.none.fl_str_mv Routledge Journals
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598453484093440