Short-term Feature Space and Music Genre Classification
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2011 |
| Outros Autores: | , , , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10400.21/2238 |
Resumo: | In music genre classification, most approaches rely on statistical characteristics of low-level features computed on short audio frames. In these methods, it is implicitly considered that frames carry equally relevant information loads and that either individual frames, or distributions thereof, somehow capture the specificities of each genre. In this paper we study the representation space defined by short-term audio features with respect to class boundaries, and compare different processing techniques to partition this space. These partitions are evaluated in terms of accuracy on two genre classification tasks, with several types of classifiers. Experiments show that a randomized and unsupervised partition of the space, used in conjunction with a Markov Model classifier lead to accuracies comparable to the state of the art. We also show that unsupervised partitions of the space tend to create less hubs. |
| id |
RCAP_29d8d5e2d6b533d05a609a23a02b1d53 |
|---|---|
| oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/2238 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Short-term Feature Space and Music Genre ClassificationShort-term Feature SpaceMusic Genre ClassificationIn music genre classification, most approaches rely on statistical characteristics of low-level features computed on short audio frames. In these methods, it is implicitly considered that frames carry equally relevant information loads and that either individual frames, or distributions thereof, somehow capture the specificities of each genre. In this paper we study the representation space defined by short-term audio features with respect to class boundaries, and compare different processing techniques to partition this space. These partitions are evaluated in terms of accuracy on two genre classification tasks, with several types of classifiers. Experiments show that a randomized and unsupervised partition of the space, used in conjunction with a Markov Model classifier lead to accuracies comparable to the state of the art. We also show that unsupervised partitions of the space tend to create less hubs.Routledge JournalsRCIPLMarques, GonçaloLanglois, ThibaultGouyon, FabienLopes, MiguelSordo, Mohamed2013-02-16T18:33:09Z20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/2238eng0929-8215info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-12T09:33:51Zoai:repositorio.ipl.pt:10400.21/2238Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:01:51.207568Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Short-term Feature Space and Music Genre Classification |
| title |
Short-term Feature Space and Music Genre Classification |
| spellingShingle |
Short-term Feature Space and Music Genre Classification Marques, Gonçalo Short-term Feature Space Music Genre Classification |
| title_short |
Short-term Feature Space and Music Genre Classification |
| title_full |
Short-term Feature Space and Music Genre Classification |
| title_fullStr |
Short-term Feature Space and Music Genre Classification |
| title_full_unstemmed |
Short-term Feature Space and Music Genre Classification |
| title_sort |
Short-term Feature Space and Music Genre Classification |
| author |
Marques, Gonçalo |
| author_facet |
Marques, Gonçalo Langlois, Thibault Gouyon, Fabien Lopes, Miguel Sordo, Mohamed |
| author_role |
author |
| author2 |
Langlois, Thibault Gouyon, Fabien Lopes, Miguel Sordo, Mohamed |
| author2_role |
author author author author |
| dc.contributor.none.fl_str_mv |
RCIPL |
| dc.contributor.author.fl_str_mv |
Marques, Gonçalo Langlois, Thibault Gouyon, Fabien Lopes, Miguel Sordo, Mohamed |
| dc.subject.por.fl_str_mv |
Short-term Feature Space Music Genre Classification |
| topic |
Short-term Feature Space Music Genre Classification |
| description |
In music genre classification, most approaches rely on statistical characteristics of low-level features computed on short audio frames. In these methods, it is implicitly considered that frames carry equally relevant information loads and that either individual frames, or distributions thereof, somehow capture the specificities of each genre. In this paper we study the representation space defined by short-term audio features with respect to class boundaries, and compare different processing techniques to partition this space. These partitions are evaluated in terms of accuracy on two genre classification tasks, with several types of classifiers. Experiments show that a randomized and unsupervised partition of the space, used in conjunction with a Markov Model classifier lead to accuracies comparable to the state of the art. We also show that unsupervised partitions of the space tend to create less hubs. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011 2011-01-01T00:00:00Z 2013-02-16T18:33:09Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/2238 |
| url |
http://hdl.handle.net/10400.21/2238 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
0929-8215 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Routledge Journals |
| publisher.none.fl_str_mv |
Routledge Journals |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598453484093440 |