Real-time bird audio detection using AI on FPGAs

Detalhes bibliográficos
Autor(a) principal: Silva, Rodrigo Lopes da
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.21/21564
Resumo: Abstract Audio-based monitoring offers a discreet solution for studying biodiversity behavior in remote or sensitive environments like forests. This work addresses the need for efficient wildlife monitoring, focusing on avian species using audio detection. This work optimizes one of the models related to the Bird Audio Detection Challenge (BADC), designs a hardware accelerator for the algorithm, and implements it in a System-on-Chip Field Programmable Gate Array (Xilinx Zynq UltraScale+ ZU3CG SoC). The model weights and activations are quantized and fine-tuned to improve the hardware performance and reduce resource usage without sacrificing much accuracy. The accelerator has different levels of quantization, 4 bits for the Convolution layers and 8 bits for the Gated Recurrent Unit (GRU) layers, implemented in the FPGA and integrated with the processor of the SoC-FPGA. The results show that the system has an accuracy of 79.5%, with reduced accuracy compared to the software Python model (89.75%). Still, it is acceptable since the objective is to reduce the model, implement it in hardware, and target 1 second or less evaluation time. The evaluation performance has a latency of 679ms, fulfilling the target delay of 1s. This work uniquely demonstrates the process of selecting a model, quantizing it, replicating the Python model in C, and implementing it into an FPGA. This represents a new project approach for a bird audio detection system within the scope of the BADC.
id RCAP_26f42049933a1a9468f4cc5e667de10f
oai_identifier_str oai:repositorio.ipl.pt:10400.21/21564
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Real-time bird audio detection using AI on FPGAsBird audio detectionBird audio detection challengeConvolutional neural networkRecurrent neural networkGated recurrent unitTensorFlowQK-erasQuantizationFPGAHardware acceleratorHigh-level synthesisDetecção de áudio de pássarosDesafio de detecção de áudio de pássarosRede neural convolucionalRede neural recorrenteQuantizaçãoAcelerador de hardwareSíntese de alto nívelAbstract Audio-based monitoring offers a discreet solution for studying biodiversity behavior in remote or sensitive environments like forests. This work addresses the need for efficient wildlife monitoring, focusing on avian species using audio detection. This work optimizes one of the models related to the Bird Audio Detection Challenge (BADC), designs a hardware accelerator for the algorithm, and implements it in a System-on-Chip Field Programmable Gate Array (Xilinx Zynq UltraScale+ ZU3CG SoC). The model weights and activations are quantized and fine-tuned to improve the hardware performance and reduce resource usage without sacrificing much accuracy. The accelerator has different levels of quantization, 4 bits for the Convolution layers and 8 bits for the Gated Recurrent Unit (GRU) layers, implemented in the FPGA and integrated with the processor of the SoC-FPGA. The results show that the system has an accuracy of 79.5%, with reduced accuracy compared to the software Python model (89.75%). Still, it is acceptable since the objective is to reduce the model, implement it in hardware, and target 1 second or less evaluation time. The evaluation performance has a latency of 679ms, fulfilling the target delay of 1s. This work uniquely demonstrates the process of selecting a model, quantizing it, replicating the Python model in C, and implementing it into an FPGA. This represents a new project approach for a bird audio detection system within the scope of the BADC.A monitorização baseada em áudio oferece uma solução discreta para estudar o comportamento da biodiversidade em ambientes remotos ou sensíveis, como florestas. Este trabalho aborda a necessidade de uma monitorização eficiente da vida selvagem, focando-se em espécies de aves através da deteção por áudio. Este trabalho otimiza um dos modelos relacionados com o Desafio de Deteção de Áudio de Pássaros (BADC), projeta um acelerador em hardware para o algoritmo e implementa-o num System-on-Chip Field Programmable Gate Array (Xilinx Zynq UltraScale+ ZU3CG SoC). Os pesos e ativações do modelo são quantizados e ajustados para melhorar o desempenho do hardware e reduzir o uso de recursos sem sacrificar muito a precisão. O acelerador tem diferentes níveis de quantização, 4 bits para as camadas de Convolução e 8 bits para as camadas Gated Recurrent Unit (GRU), implementadas na FPGA e integradas com o processador do SoC-FPGA. Os resultados revelam que o sistema possui uma precisão de 79,5%, sendo esta inferior à precisão do modelo em Python (89,75%). No entanto, é aceitável, uma vez que o objetivo é reduzir o modelo, implementá-lo em hardware e alcançar um tempo de avaliação de 1 segundo ou menos. O desempenho de avaliação tem uma latência de 679ms, cumprindo o objectivo de uma atraso maximo de 1s. Este trabalho demonstra de forma única todo o processo, desde a seleção de um modelo, quantização, replicação do modelo Python em C e implementação numa arquitetura hardware/software reconfigurável. Representa uma nova abordagem de projeto de um sistema para deteção de áudio de pássaros no âmbito do BADC.Véstias, Mário PereiraDuarte, Rui António PolicarpoRCIPLSilva, Rodrigo Lopes da2025-02-21T12:03:49Z2024-072024-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.21/21564urn:tid:203822749enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-26T02:20:13Zoai:repositorio.ipl.pt:10400.21/21564Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:18:18.198995Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Real-time bird audio detection using AI on FPGAs
title Real-time bird audio detection using AI on FPGAs
spellingShingle Real-time bird audio detection using AI on FPGAs
Silva, Rodrigo Lopes da
Bird audio detection
Bird audio detection challenge
Convolutional neural network
Recurrent neural network
Gated recurrent unit
TensorFlow
QK-eras
Quantization
FPGA
Hardware accelerator
High-level synthesis
Detecção de áudio de pássaros
Desafio de detecção de áudio de pássaros
Rede neural convolucional
Rede neural recorrente
Quantização
Acelerador de hardware
Síntese de alto nível
title_short Real-time bird audio detection using AI on FPGAs
title_full Real-time bird audio detection using AI on FPGAs
title_fullStr Real-time bird audio detection using AI on FPGAs
title_full_unstemmed Real-time bird audio detection using AI on FPGAs
title_sort Real-time bird audio detection using AI on FPGAs
author Silva, Rodrigo Lopes da
author_facet Silva, Rodrigo Lopes da
author_role author
dc.contributor.none.fl_str_mv Véstias, Mário Pereira
Duarte, Rui António Policarpo
RCIPL
dc.contributor.author.fl_str_mv Silva, Rodrigo Lopes da
dc.subject.por.fl_str_mv Bird audio detection
Bird audio detection challenge
Convolutional neural network
Recurrent neural network
Gated recurrent unit
TensorFlow
QK-eras
Quantization
FPGA
Hardware accelerator
High-level synthesis
Detecção de áudio de pássaros
Desafio de detecção de áudio de pássaros
Rede neural convolucional
Rede neural recorrente
Quantização
Acelerador de hardware
Síntese de alto nível
topic Bird audio detection
Bird audio detection challenge
Convolutional neural network
Recurrent neural network
Gated recurrent unit
TensorFlow
QK-eras
Quantization
FPGA
Hardware accelerator
High-level synthesis
Detecção de áudio de pássaros
Desafio de detecção de áudio de pássaros
Rede neural convolucional
Rede neural recorrente
Quantização
Acelerador de hardware
Síntese de alto nível
description Abstract Audio-based monitoring offers a discreet solution for studying biodiversity behavior in remote or sensitive environments like forests. This work addresses the need for efficient wildlife monitoring, focusing on avian species using audio detection. This work optimizes one of the models related to the Bird Audio Detection Challenge (BADC), designs a hardware accelerator for the algorithm, and implements it in a System-on-Chip Field Programmable Gate Array (Xilinx Zynq UltraScale+ ZU3CG SoC). The model weights and activations are quantized and fine-tuned to improve the hardware performance and reduce resource usage without sacrificing much accuracy. The accelerator has different levels of quantization, 4 bits for the Convolution layers and 8 bits for the Gated Recurrent Unit (GRU) layers, implemented in the FPGA and integrated with the processor of the SoC-FPGA. The results show that the system has an accuracy of 79.5%, with reduced accuracy compared to the software Python model (89.75%). Still, it is acceptable since the objective is to reduce the model, implement it in hardware, and target 1 second or less evaluation time. The evaluation performance has a latency of 679ms, fulfilling the target delay of 1s. This work uniquely demonstrates the process of selecting a model, quantizing it, replicating the Python model in C, and implementing it into an FPGA. This represents a new project approach for a bird audio detection system within the scope of the BADC.
publishDate 2024
dc.date.none.fl_str_mv 2024-07
2024-07-01T00:00:00Z
2025-02-21T12:03:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.21/21564
urn:tid:203822749
url http://hdl.handle.net/10400.21/21564
identifier_str_mv urn:tid:203822749
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833599204681842688