Intelligent video object tracking in large public environments

Bibliographic Details
Main Author: Ferreira, Marco Paulo Fernandes
Publication Date: 2009
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10071/23212
Summary: This Dissertation addresses the problem of video object tracking in large public environments, and was developed within the context of a partnership between ISCTE-IUL and THALES1 object. This partnership aimed at developing a new approach to video tracking, based on a simple tracking algorithm aided by object position estimations to deal with the harder cases of video object tracking. This proposed approach has been applied successfully in the TRAPLE2 project developed at THALES where the main focus is the real-time monitoring of public spaces and the tracking of moving objects (i.e., persons). The proposed low-processing tracking solution woks as follows: after the detection step, the various objects in the visual scene are tracked through their centres of mass (centroids) that, typically, exhibit little variations along close apart video frames. After this step, some heuristics are applied to the results to maintain coherent the identification of the video objects and estimate their positions in cases of uncertainties, e.g., occlusions, which is one of the major novelties proposed in this Dissertation. The proposed approach was tested with relevant test video sequences representing real video monitoring scenes and the obtained results showed that this approach is able to track multiple persons in real-time with reasonable computational power.
id RCAP_25ec777d71e96e8514aba37fdb40b217
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/23212
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Intelligent video object tracking in large public environmentsMultiple video object trackingOcclusions handlingPeople trackingReal-time video surveillanceSeguimento de múltiplos objectos de vídeoProcessamento de oclusõesSeguimento de pessoasVideovigilância em tempo realThis Dissertation addresses the problem of video object tracking in large public environments, and was developed within the context of a partnership between ISCTE-IUL and THALES1 object. This partnership aimed at developing a new approach to video tracking, based on a simple tracking algorithm aided by object position estimations to deal with the harder cases of video object tracking. This proposed approach has been applied successfully in the TRAPLE2 project developed at THALES where the main focus is the real-time monitoring of public spaces and the tracking of moving objects (i.e., persons). The proposed low-processing tracking solution woks as follows: after the detection step, the various objects in the visual scene are tracked through their centres of mass (centroids) that, typically, exhibit little variations along close apart video frames. After this step, some heuristics are applied to the results to maintain coherent the identification of the video objects and estimate their positions in cases of uncertainties, e.g., occlusions, which is one of the major novelties proposed in this Dissertation. The proposed approach was tested with relevant test video sequences representing real video monitoring scenes and the obtained results showed that this approach is able to track multiple persons in real-time with reasonable computational power.Esta dissertação aborda o problema do seguimento de objectos vídeo em ambientes públicos de grande dimensão e foi desenvolvida no contexto de uma parceria entre o ISCTE-IUL e a THALES. Esta parceria visou o desenvolvimento de uma nova abordagem ao seguimento de objectos de vídeo baseada num processamento de vídeo simples em conjunto com a estimação da posição dos objectos nos casos mais difíceis de efectuar o seguimento. Esta abordagem foi aplicada com sucesso no âmbito do projecto TRAPLE desenvolvido pela THALES onde um dos principais enfoques é o seguimento de múltiplos objectos de vídeo em tempo real em espaços públicos, tendo como objectivo o seguimento de pessoas que se movam ao longo desse espaço. A solução de baixo nível de processamento proposta funciona do seguinte modo: após o passo de detecção de objectos, os diversos objectos detectados na cena são seguidos através dos seus centros de massa que, normalmente, apresentam poucas variações ao longo de imagens consecutivas de vídeo. Após este passo, algumas heurísticas são aplicadas aos resultados mantendo a identificação dos objectos de vídeo coerente e estimando as suas posições em casos de incertezas (e.g., oclusões) que é uma das principais novidades propostas nesta dissertação. A abordagem proposta foi testada com várias sequências de vídeo de teste representando cenas reais de videovigilância e os resultados obtidos mostraram que esta abordagem é capaz de seguir várias pessoas em tempo real com um nível de processamento moderado.2021-09-22T17:08:37Z2009-01-01T00:00:00Z20092009-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/23212engFerreira, Marco Paulo Fernandesinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T02:35:04Zoai:repositorio.iscte-iul.pt:10071/23212Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:01:23.598193Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Intelligent video object tracking in large public environments
title Intelligent video object tracking in large public environments
spellingShingle Intelligent video object tracking in large public environments
Ferreira, Marco Paulo Fernandes
Multiple video object tracking
Occlusions handling
People tracking
Real-time video surveillance
Seguimento de múltiplos objectos de vídeo
Processamento de oclusões
Seguimento de pessoas
Videovigilância em tempo real
title_short Intelligent video object tracking in large public environments
title_full Intelligent video object tracking in large public environments
title_fullStr Intelligent video object tracking in large public environments
title_full_unstemmed Intelligent video object tracking in large public environments
title_sort Intelligent video object tracking in large public environments
author Ferreira, Marco Paulo Fernandes
author_facet Ferreira, Marco Paulo Fernandes
author_role author
dc.contributor.author.fl_str_mv Ferreira, Marco Paulo Fernandes
dc.subject.por.fl_str_mv Multiple video object tracking
Occlusions handling
People tracking
Real-time video surveillance
Seguimento de múltiplos objectos de vídeo
Processamento de oclusões
Seguimento de pessoas
Videovigilância em tempo real
topic Multiple video object tracking
Occlusions handling
People tracking
Real-time video surveillance
Seguimento de múltiplos objectos de vídeo
Processamento de oclusões
Seguimento de pessoas
Videovigilância em tempo real
description This Dissertation addresses the problem of video object tracking in large public environments, and was developed within the context of a partnership between ISCTE-IUL and THALES1 object. This partnership aimed at developing a new approach to video tracking, based on a simple tracking algorithm aided by object position estimations to deal with the harder cases of video object tracking. This proposed approach has been applied successfully in the TRAPLE2 project developed at THALES where the main focus is the real-time monitoring of public spaces and the tracking of moving objects (i.e., persons). The proposed low-processing tracking solution woks as follows: after the detection step, the various objects in the visual scene are tracked through their centres of mass (centroids) that, typically, exhibit little variations along close apart video frames. After this step, some heuristics are applied to the results to maintain coherent the identification of the video objects and estimate their positions in cases of uncertainties, e.g., occlusions, which is one of the major novelties proposed in this Dissertation. The proposed approach was tested with relevant test video sequences representing real video monitoring scenes and the obtained results showed that this approach is able to track multiple persons in real-time with reasonable computational power.
publishDate 2009
dc.date.none.fl_str_mv 2009-01-01T00:00:00Z
2009
2009-10
2021-09-22T17:08:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/23212
url http://hdl.handle.net/10071/23212
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/octet-stream
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597136936108032