A comparison about the predictive ability of FCGARCH, facing EGARCH and GJR

Bibliographic Details
Main Author: Matias, Ricardo Miguel Borges
Publication Date: 2012
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10071/6430
Summary: In order to study the volatility of a stock market, several volatility models have been created, studied and improved throughout the time. Due to the extreme and actual situation in international stock market’s volatility, the main objective of this thesis is to focus on the FCGARCH model created by Medeiros and Veiga (2009), and compare it with some of the most popular asymmetric autoregressive conditional heteroskedasticity models, such as EGARCH and GJR. Using the daily returns of 5 most important international stock market indexes, such as S&P500 (USA), FTSE100 (UK), Nikkei225 (Japan), DAX30 (Germany) and PSI20 (Portugal), and using the Harvey-Newbold test, we are going to check which of these models is the best one to fit the conditional heteroskedastic volatilities of the returns of the indexes under study. In order to make the thesis possible, I have created the FCGARCH, EGARCH and GJR models’ codes in Matlab, with the help of my co-supervisor, Doctor Renato Costa, as well as used the Harvey-Newbold test in E-views, created by my supervisor, Professor José Dias Curto. According to the estimation results, in the in-sample analysis, when looking at the Quasi-Maximum-Log likelihood goodness-of-fit measure, the FCGARCH fits most of the indexes’ returns under study, where, in the out-of-sample analysis, according to the Harvey-Newbold test for multiple forecasts encompassing, the results show that the GJR seems to encompass the other two models in most of the indexes, thus concluding that GJR seems to be the best model to forecast the volatility.
id RCAP_237a681565d43ec8eeeaf87eef5af087
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/6430
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling A comparison about the predictive ability of FCGARCH, facing EGARCH and GJRForecasting volatilityEGARCHGJRFCGARCHPrevisão de volatilidadeIn order to study the volatility of a stock market, several volatility models have been created, studied and improved throughout the time. Due to the extreme and actual situation in international stock market’s volatility, the main objective of this thesis is to focus on the FCGARCH model created by Medeiros and Veiga (2009), and compare it with some of the most popular asymmetric autoregressive conditional heteroskedasticity models, such as EGARCH and GJR. Using the daily returns of 5 most important international stock market indexes, such as S&P500 (USA), FTSE100 (UK), Nikkei225 (Japan), DAX30 (Germany) and PSI20 (Portugal), and using the Harvey-Newbold test, we are going to check which of these models is the best one to fit the conditional heteroskedastic volatilities of the returns of the indexes under study. In order to make the thesis possible, I have created the FCGARCH, EGARCH and GJR models’ codes in Matlab, with the help of my co-supervisor, Doctor Renato Costa, as well as used the Harvey-Newbold test in E-views, created by my supervisor, Professor José Dias Curto. According to the estimation results, in the in-sample analysis, when looking at the Quasi-Maximum-Log likelihood goodness-of-fit measure, the FCGARCH fits most of the indexes’ returns under study, where, in the out-of-sample analysis, according to the Harvey-Newbold test for multiple forecasts encompassing, the results show that the GJR seems to encompass the other two models in most of the indexes, thus concluding that GJR seems to be the best model to forecast the volatility.Para que possamos estudar a volatilidade de uma ação, muitos foram os modelos criados, estudados e melhorados ao longo do tempo. Devido à extrema e atual situação da volatilidade nos mercados acionistas internacionais, o principal objetivo desta tese é focar no modelo FCGARCH, criado por Medeiros e Veiga (2009), e compará-lo com alguns dos mais importantes modelos heterocedásticos, autorregressivos e assimétricos, como o EGARCH e o GJR. Utilizando os retornos diários de 5 dos índices mais importantes a nível internacional, tais como S&P500 (EUA), FTSE100 (RU), Nikkei225 (Japão), DAX30 (Alemanha) e PSI20 (Portugal), e usando o teste de Harvey-Newbold, vamos descobrir qual dos modelos apresentados é o que melhor descreve o comportamento das variâncias condicionais heterocedásticas dos retornos dos índices sob estudo. Para que a criação desta tese fosse possível, tive de criar os códigos dos modelos do FCGARCH, EGARCH e GJR no Matlab, com a ajuda do meu co-orientador, o Doutor Renato Costa, assim como usar o teste de Harvey-Newbold no E-views, criado pelo meu orientador, o Professor José Dias Curto. De acordo com os resultados estimados, na análise in-sample, ao olharmos para a medida de quase-máxima-verosimilhança, o FCGARCH descreve bem a maioria dos retornos sob estudo, enquanto, na análise out-of-sample, de acordo com o teste de Harvey-Newbold para a abrangência de previsões, os resultados demonstram que o GJR parece abranger os outros dois modelos na maioria dos índices, desta forma concluindo que o GJR parece ser o melhor modelo para prever a volatilidade.2014-02-10T16:47:21Z2012-01-01T00:00:00Z20122012-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/6430engMatias, Ricardo Miguel Borgesinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:24:31Zoai:repositorio.iscte-iul.pt:10071/6430Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:22:53.723515Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv A comparison about the predictive ability of FCGARCH, facing EGARCH and GJR
title A comparison about the predictive ability of FCGARCH, facing EGARCH and GJR
spellingShingle A comparison about the predictive ability of FCGARCH, facing EGARCH and GJR
Matias, Ricardo Miguel Borges
Forecasting volatility
EGARCH
GJR
FCGARCH
Previsão de volatilidade
title_short A comparison about the predictive ability of FCGARCH, facing EGARCH and GJR
title_full A comparison about the predictive ability of FCGARCH, facing EGARCH and GJR
title_fullStr A comparison about the predictive ability of FCGARCH, facing EGARCH and GJR
title_full_unstemmed A comparison about the predictive ability of FCGARCH, facing EGARCH and GJR
title_sort A comparison about the predictive ability of FCGARCH, facing EGARCH and GJR
author Matias, Ricardo Miguel Borges
author_facet Matias, Ricardo Miguel Borges
author_role author
dc.contributor.author.fl_str_mv Matias, Ricardo Miguel Borges
dc.subject.por.fl_str_mv Forecasting volatility
EGARCH
GJR
FCGARCH
Previsão de volatilidade
topic Forecasting volatility
EGARCH
GJR
FCGARCH
Previsão de volatilidade
description In order to study the volatility of a stock market, several volatility models have been created, studied and improved throughout the time. Due to the extreme and actual situation in international stock market’s volatility, the main objective of this thesis is to focus on the FCGARCH model created by Medeiros and Veiga (2009), and compare it with some of the most popular asymmetric autoregressive conditional heteroskedasticity models, such as EGARCH and GJR. Using the daily returns of 5 most important international stock market indexes, such as S&P500 (USA), FTSE100 (UK), Nikkei225 (Japan), DAX30 (Germany) and PSI20 (Portugal), and using the Harvey-Newbold test, we are going to check which of these models is the best one to fit the conditional heteroskedastic volatilities of the returns of the indexes under study. In order to make the thesis possible, I have created the FCGARCH, EGARCH and GJR models’ codes in Matlab, with the help of my co-supervisor, Doctor Renato Costa, as well as used the Harvey-Newbold test in E-views, created by my supervisor, Professor José Dias Curto. According to the estimation results, in the in-sample analysis, when looking at the Quasi-Maximum-Log likelihood goodness-of-fit measure, the FCGARCH fits most of the indexes’ returns under study, where, in the out-of-sample analysis, according to the Harvey-Newbold test for multiple forecasts encompassing, the results show that the GJR seems to encompass the other two models in most of the indexes, thus concluding that GJR seems to be the best model to forecast the volatility.
publishDate 2012
dc.date.none.fl_str_mv 2012-01-01T00:00:00Z
2012
2012-10
2014-02-10T16:47:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/6430
url http://hdl.handle.net/10071/6430
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/octet-stream
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597371451179008