Export Ready — 

New strategies for the production of biosurfactants towards biomedical applications

Bibliographic Details
Main Author: Rodrigues, L. R.
Publication Date: 2011
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/34027
Summary: Microbial adhesion to biomaterial surfaces and subsequent biofilm formation has been observed on nearly all medical devices with severe economic and medical consequences. The significant resistance of biofilms to conventional antibiotic therapies has encouraged the development of new biomaterials and coatings. Biosurfactants represent an interesting approach as they can be used to modify the surface properties conferring it an anti-adhesive and antimicrobial activity, leading to new and effective means of combating colonization by pathogenic microorganisms without the use of synthetic drugs and chemicals. These microbial compounds constitute a diverse group of surface-active molecules occurring in a variety of chemical structures. Biosurfactants from lactic acid bacteria have been used as a strategy to avoid microbial colonization of silicone rubber voice prostheses. Also, they were found to be active against several bacteria and filamentous fungi responsible for diseases and infections in the urinary, vaginal and gastrointestinal tracts, and in the skin. Nevertheless, it is important to stress that the insufficient data on their toxicity for humans, as well as their high costs of large-scale production, have been restraining their commercialization and use in most medical applications. Many biotechnological strategies have been pursued to reduce the biosurfactants production costs including the use of agro-industrial wastes as substrates, optimization of medium and culture conditions, and efficient recovery processes. However, the improvements obtained from these strategies are marginal and to successfully compete with synthetic surfactants, novel microorganisms must be designed. The use of hyper-producer strains allows increasing the production yields and consequently reducing costs. These strains can be screened from the natural environment, or engineered using synthetic biology approaches. Hence, data on the genes involved on the production of biosurfactants is critical for designing organisms with improved features. Once the genes have been indentified and isolated, they can be expressed in other microorganisms, or they can be modified or placed under regulation of strong promoters to increase their expression and so enhance production. This knowledge will also allow the production of novel biosurfactants with specific new properties for different industrial applications. Further advances in genetic engineering of the known biosurfactant molecules could yield potent biosurfactants with altered antimicrobial profiles and decreased toxicity against mammalian cells.
id RCAP_22f6e3a1df6a90928c2588dedfe17ddc
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/34027
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling New strategies for the production of biosurfactants towards biomedical applicationsBiosurfactantsSynthetic biologyBiomedical applicationsMicrobial adhesion to biomaterial surfaces and subsequent biofilm formation has been observed on nearly all medical devices with severe economic and medical consequences. The significant resistance of biofilms to conventional antibiotic therapies has encouraged the development of new biomaterials and coatings. Biosurfactants represent an interesting approach as they can be used to modify the surface properties conferring it an anti-adhesive and antimicrobial activity, leading to new and effective means of combating colonization by pathogenic microorganisms without the use of synthetic drugs and chemicals. These microbial compounds constitute a diverse group of surface-active molecules occurring in a variety of chemical structures. Biosurfactants from lactic acid bacteria have been used as a strategy to avoid microbial colonization of silicone rubber voice prostheses. Also, they were found to be active against several bacteria and filamentous fungi responsible for diseases and infections in the urinary, vaginal and gastrointestinal tracts, and in the skin. Nevertheless, it is important to stress that the insufficient data on their toxicity for humans, as well as their high costs of large-scale production, have been restraining their commercialization and use in most medical applications. Many biotechnological strategies have been pursued to reduce the biosurfactants production costs including the use of agro-industrial wastes as substrates, optimization of medium and culture conditions, and efficient recovery processes. However, the improvements obtained from these strategies are marginal and to successfully compete with synthetic surfactants, novel microorganisms must be designed. The use of hyper-producer strains allows increasing the production yields and consequently reducing costs. These strains can be screened from the natural environment, or engineered using synthetic biology approaches. Hence, data on the genes involved on the production of biosurfactants is critical for designing organisms with improved features. Once the genes have been indentified and isolated, they can be expressed in other microorganisms, or they can be modified or placed under regulation of strong promoters to increase their expression and so enhance production. This knowledge will also allow the production of novel biosurfactants with specific new properties for different industrial applications. Further advances in genetic engineering of the known biosurfactant molecules could yield potent biosurfactants with altered antimicrobial profiles and decreased toxicity against mammalian cells.Universidade do MinhoRodrigues, L. R.20112011-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/34027engRodrigues, L. R., New strategies for the production of biosurfactants towards biomedical applications. MicroBiotec'11 - Book of Abstracts. No. S5: 2, Braga, Portugal, 1-3 December, 42-42, 2011. ISBN: 978-989-97478-1-4978-989-97478-1-4info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T07:32:38Zoai:repositorium.sdum.uminho.pt:1822/34027Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:31:05.665704Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv New strategies for the production of biosurfactants towards biomedical applications
title New strategies for the production of biosurfactants towards biomedical applications
spellingShingle New strategies for the production of biosurfactants towards biomedical applications
Rodrigues, L. R.
Biosurfactants
Synthetic biology
Biomedical applications
title_short New strategies for the production of biosurfactants towards biomedical applications
title_full New strategies for the production of biosurfactants towards biomedical applications
title_fullStr New strategies for the production of biosurfactants towards biomedical applications
title_full_unstemmed New strategies for the production of biosurfactants towards biomedical applications
title_sort New strategies for the production of biosurfactants towards biomedical applications
author Rodrigues, L. R.
author_facet Rodrigues, L. R.
author_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Rodrigues, L. R.
dc.subject.por.fl_str_mv Biosurfactants
Synthetic biology
Biomedical applications
topic Biosurfactants
Synthetic biology
Biomedical applications
description Microbial adhesion to biomaterial surfaces and subsequent biofilm formation has been observed on nearly all medical devices with severe economic and medical consequences. The significant resistance of biofilms to conventional antibiotic therapies has encouraged the development of new biomaterials and coatings. Biosurfactants represent an interesting approach as they can be used to modify the surface properties conferring it an anti-adhesive and antimicrobial activity, leading to new and effective means of combating colonization by pathogenic microorganisms without the use of synthetic drugs and chemicals. These microbial compounds constitute a diverse group of surface-active molecules occurring in a variety of chemical structures. Biosurfactants from lactic acid bacteria have been used as a strategy to avoid microbial colonization of silicone rubber voice prostheses. Also, they were found to be active against several bacteria and filamentous fungi responsible for diseases and infections in the urinary, vaginal and gastrointestinal tracts, and in the skin. Nevertheless, it is important to stress that the insufficient data on their toxicity for humans, as well as their high costs of large-scale production, have been restraining their commercialization and use in most medical applications. Many biotechnological strategies have been pursued to reduce the biosurfactants production costs including the use of agro-industrial wastes as substrates, optimization of medium and culture conditions, and efficient recovery processes. However, the improvements obtained from these strategies are marginal and to successfully compete with synthetic surfactants, novel microorganisms must be designed. The use of hyper-producer strains allows increasing the production yields and consequently reducing costs. These strains can be screened from the natural environment, or engineered using synthetic biology approaches. Hence, data on the genes involved on the production of biosurfactants is critical for designing organisms with improved features. Once the genes have been indentified and isolated, they can be expressed in other microorganisms, or they can be modified or placed under regulation of strong promoters to increase their expression and so enhance production. This knowledge will also allow the production of novel biosurfactants with specific new properties for different industrial applications. Further advances in genetic engineering of the known biosurfactant molecules could yield potent biosurfactants with altered antimicrobial profiles and decreased toxicity against mammalian cells.
publishDate 2011
dc.date.none.fl_str_mv 2011
2011-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/34027
url http://hdl.handle.net/1822/34027
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Rodrigues, L. R., New strategies for the production of biosurfactants towards biomedical applications. MicroBiotec'11 - Book of Abstracts. No. S5: 2, Braga, Portugal, 1-3 December, 42-42, 2011. ISBN: 978-989-97478-1-4
978-989-97478-1-4
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595992775065600