A first approach to some basilar questions on the relationship between state-of-the-art GP variants and GEP

Detalhes bibliográficos
Autor(a) principal: Neto, David Benedy Pereira
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.1/12710
Resumo: Gene Expression Programming (GEP) is an alternative to Genetic Programming (GP). Given its characteristics compared to GP, we question if GEP should be the standard choice for evolutionary program synthesis, both as base for research and practical application. We raise the question if such a shift could increase the rate of investigation, applicability and the quality of results obtained from evolutionary techniques for code optimization. We present three distinct and unprecedented studies using GEP in an attempt to develop understanding, investigate the potential and forward the branch. Each study has an individual contribution on its own involving GEP. As a whole, the three studies try to investigate di erent aspects that might be critical to answer the questions raised in the previous paragraph. In the rst individual contribution, we investigate GEP's applicability to automatically synthesize sorting algorithms. Performance is compared against GP under similar experimental conditions. GEP is shown to be capable of producing sorting algorithms and outperforms GP in doing so. As a second experiment, we enhanced GEP's evolutionary process with semantic awareness of candidate programs, originating Semantic Gene Expression Programming (SGEP), similarly to how Semantic Genetic Programming (SGP) builds over GP. Geometric semantic concepts are then introduced to SGEP, forming Geometric Semantic Gene Expression Programming (GSGEP). A comparative experiment between GP, GEP, SGP and SGEP is performed using di erent problems and setup combinations. Results were mixed when comparing SGEP and SGP, suggesting performance is signi cantly related to the problem addressed. By out-performing the alternatives in many of the benchmarks, SGEP demonstrates practical potential. The results are analyzed in di erent perspectives, also providing insight on the potential of di erent crossover variations when applied along GP/GEP. GEP' compatibility with innovation developed to work with GP is demonstrated possible without extensive adaptation. Considerations for integration of SGEP are discussed. In the last contribution, a new semantic operator is proposed, SCC, which applies crossover conditionally only when elements are semantically di erent enough, performing mutation otherwise. The strategy attempts to encourage semantic diversity and wider the portion of the semantic-solution space searched. A practical experiment was performed alternating the integration of SCC in the evolutionary process. When using the operator, the quality of obtained solutions alternated between slight improvements and declines. The results don't show a relevant indication of possible advantage from its employment and don't con rm what was expected in the theory. We discuss ways in which further work might investigate this concept and assess if it has practical potential under di erent circumstances. On the other hand, in regards to the basilar questions of this investigation, the process of development and testing of SCC is performed completely on a GEP/SGEP base, suggesting how the latest can be used as the base for future research on evolutionary program synthesis.
id RCAP_1ef7df77383ac611f21007928d5d0009
oai_identifier_str oai:sapientia.ualg.pt:10400.1/12710
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling A first approach to some basilar questions on the relationship between state-of-the-art GP variants and GEPAutomatic synthesis of sorting algorithms by gene expression programming + (geometric) semantic gene expression programming + encouraging phenotype variation with a new semantic operator: semantic conditional crossoverFirst approachBasilar questionsRelationship between State-of-the ArtGP variants and GEPGene Expression Programming (GEP) is an alternative to Genetic Programming (GP). Given its characteristics compared to GP, we question if GEP should be the standard choice for evolutionary program synthesis, both as base for research and practical application. We raise the question if such a shift could increase the rate of investigation, applicability and the quality of results obtained from evolutionary techniques for code optimization. We present three distinct and unprecedented studies using GEP in an attempt to develop understanding, investigate the potential and forward the branch. Each study has an individual contribution on its own involving GEP. As a whole, the three studies try to investigate di erent aspects that might be critical to answer the questions raised in the previous paragraph. In the rst individual contribution, we investigate GEP's applicability to automatically synthesize sorting algorithms. Performance is compared against GP under similar experimental conditions. GEP is shown to be capable of producing sorting algorithms and outperforms GP in doing so. As a second experiment, we enhanced GEP's evolutionary process with semantic awareness of candidate programs, originating Semantic Gene Expression Programming (SGEP), similarly to how Semantic Genetic Programming (SGP) builds over GP. Geometric semantic concepts are then introduced to SGEP, forming Geometric Semantic Gene Expression Programming (GSGEP). A comparative experiment between GP, GEP, SGP and SGEP is performed using di erent problems and setup combinations. Results were mixed when comparing SGEP and SGP, suggesting performance is signi cantly related to the problem addressed. By out-performing the alternatives in many of the benchmarks, SGEP demonstrates practical potential. The results are analyzed in di erent perspectives, also providing insight on the potential of di erent crossover variations when applied along GP/GEP. GEP' compatibility with innovation developed to work with GP is demonstrated possible without extensive adaptation. Considerations for integration of SGEP are discussed. In the last contribution, a new semantic operator is proposed, SCC, which applies crossover conditionally only when elements are semantically di erent enough, performing mutation otherwise. The strategy attempts to encourage semantic diversity and wider the portion of the semantic-solution space searched. A practical experiment was performed alternating the integration of SCC in the evolutionary process. When using the operator, the quality of obtained solutions alternated between slight improvements and declines. The results don't show a relevant indication of possible advantage from its employment and don't con rm what was expected in the theory. We discuss ways in which further work might investigate this concept and assess if it has practical potential under di erent circumstances. On the other hand, in regards to the basilar questions of this investigation, the process of development and testing of SCC is performed completely on a GEP/SGEP base, suggesting how the latest can be used as the base for future research on evolutionary program synthesis.Oliveira, José Valente deSapientiaNeto, David Benedy Pereira2019-08-01T10:01:36Z2019-01-3020182019-01-30T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.1/12710urn:tid:202230716enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:42:44Zoai:sapientia.ualg.pt:10400.1/12710Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:32:52.331792Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv A first approach to some basilar questions on the relationship between state-of-the-art GP variants and GEP
Automatic synthesis of sorting algorithms by gene expression programming + (geometric) semantic gene expression programming + encouraging phenotype variation with a new semantic operator: semantic conditional crossover
title A first approach to some basilar questions on the relationship between state-of-the-art GP variants and GEP
spellingShingle A first approach to some basilar questions on the relationship between state-of-the-art GP variants and GEP
Neto, David Benedy Pereira
First approach
Basilar questions
Relationship between State-of-the Art
GP variants and GEP
title_short A first approach to some basilar questions on the relationship between state-of-the-art GP variants and GEP
title_full A first approach to some basilar questions on the relationship between state-of-the-art GP variants and GEP
title_fullStr A first approach to some basilar questions on the relationship between state-of-the-art GP variants and GEP
title_full_unstemmed A first approach to some basilar questions on the relationship between state-of-the-art GP variants and GEP
title_sort A first approach to some basilar questions on the relationship between state-of-the-art GP variants and GEP
author Neto, David Benedy Pereira
author_facet Neto, David Benedy Pereira
author_role author
dc.contributor.none.fl_str_mv Oliveira, José Valente de
Sapientia
dc.contributor.author.fl_str_mv Neto, David Benedy Pereira
dc.subject.por.fl_str_mv First approach
Basilar questions
Relationship between State-of-the Art
GP variants and GEP
topic First approach
Basilar questions
Relationship between State-of-the Art
GP variants and GEP
description Gene Expression Programming (GEP) is an alternative to Genetic Programming (GP). Given its characteristics compared to GP, we question if GEP should be the standard choice for evolutionary program synthesis, both as base for research and practical application. We raise the question if such a shift could increase the rate of investigation, applicability and the quality of results obtained from evolutionary techniques for code optimization. We present three distinct and unprecedented studies using GEP in an attempt to develop understanding, investigate the potential and forward the branch. Each study has an individual contribution on its own involving GEP. As a whole, the three studies try to investigate di erent aspects that might be critical to answer the questions raised in the previous paragraph. In the rst individual contribution, we investigate GEP's applicability to automatically synthesize sorting algorithms. Performance is compared against GP under similar experimental conditions. GEP is shown to be capable of producing sorting algorithms and outperforms GP in doing so. As a second experiment, we enhanced GEP's evolutionary process with semantic awareness of candidate programs, originating Semantic Gene Expression Programming (SGEP), similarly to how Semantic Genetic Programming (SGP) builds over GP. Geometric semantic concepts are then introduced to SGEP, forming Geometric Semantic Gene Expression Programming (GSGEP). A comparative experiment between GP, GEP, SGP and SGEP is performed using di erent problems and setup combinations. Results were mixed when comparing SGEP and SGP, suggesting performance is signi cantly related to the problem addressed. By out-performing the alternatives in many of the benchmarks, SGEP demonstrates practical potential. The results are analyzed in di erent perspectives, also providing insight on the potential of di erent crossover variations when applied along GP/GEP. GEP' compatibility with innovation developed to work with GP is demonstrated possible without extensive adaptation. Considerations for integration of SGEP are discussed. In the last contribution, a new semantic operator is proposed, SCC, which applies crossover conditionally only when elements are semantically di erent enough, performing mutation otherwise. The strategy attempts to encourage semantic diversity and wider the portion of the semantic-solution space searched. A practical experiment was performed alternating the integration of SCC in the evolutionary process. When using the operator, the quality of obtained solutions alternated between slight improvements and declines. The results don't show a relevant indication of possible advantage from its employment and don't con rm what was expected in the theory. We discuss ways in which further work might investigate this concept and assess if it has practical potential under di erent circumstances. On the other hand, in regards to the basilar questions of this investigation, the process of development and testing of SCC is performed completely on a GEP/SGEP base, suggesting how the latest can be used as the base for future research on evolutionary program synthesis.
publishDate 2018
dc.date.none.fl_str_mv 2018
2019-08-01T10:01:36Z
2019-01-30
2019-01-30T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/12710
urn:tid:202230716
url http://hdl.handle.net/10400.1/12710
identifier_str_mv urn:tid:202230716
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598710560325632