Adaptive bridge model for compressed domain point cloud classification
| Main Author: | |
|---|---|
| Publication Date: | 2024 |
| Other Authors: | , , |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10400.8/10358 |
Summary: | The recent adoption of deep learning-based models for the processing and coding of multimedia signals has brought noticeable gains in performance, which have established deep learning-based solutions as the uncontested state-of-the-art both for computer vision tasks, targeting machine consumption, as well as, more recently, coding applications, targeting human visualization. Traditionally, applications requiring both coding and computer vision processing require frst decoding the bitstream and then applying the computer vision methods to the decompressed multimedia signals. However, the adoption of deep learning-based solutions enables the use of compressed domain computer vision processing, with gains in performance and computational complexity over the decompressed domain approach. For point clouds (PCs), these gains have been demonstrated in the single available compressed domain computer vision processing solution, named Compressed Domain PC Classifer, which processes JPEG Pleno PC coding (PCC) compressed streams using a PC classifer largely compatible with the state-of-the-art spatial domain PointGrid classifer. However, the available Compressed Domain PC Classifer presents strong limitations by imposing a single, specifc input size which is associated to specifc JPEG Pleno PCC confgurations; this limits the compression performance as these confgurations are not ideal for all PCs due to their diferent characteristics, notably density. To overcome these limitations, this paper proposes the frst Adaptive Compressed Domain PC Classifer solution which includes a novel adaptive bridge model that allows to process the JPEG Pleno PCC encoded bit streams using diferent coding confgurations, now maximizing the compression efciency. Experimental results show that the novel Adaptive Compressed Domain PC Classifer allows JPEG PCC to achieve better compression performance by not imposing a single, specifc coding confguration for all PCs, regardless of its diferent characteristics. Moreover, the added adaptability power can achieve slightly better PC classifcation performance than the previous Compressed Domain PC Classifer and largely better PC classifcation performance (and lower number of weights) than the PointGrid PC classifer working in the decompressed domain. |
| id |
RCAP_1d485ca68563b80d0047f2c340144a2f |
|---|---|
| oai_identifier_str |
oai:iconline.ipleiria.pt:10400.8/10358 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Adaptive bridge model for compressed domain point cloud classificationPoint cloudClassifcationCodingCompressed domainDeep learningThe recent adoption of deep learning-based models for the processing and coding of multimedia signals has brought noticeable gains in performance, which have established deep learning-based solutions as the uncontested state-of-the-art both for computer vision tasks, targeting machine consumption, as well as, more recently, coding applications, targeting human visualization. Traditionally, applications requiring both coding and computer vision processing require frst decoding the bitstream and then applying the computer vision methods to the decompressed multimedia signals. However, the adoption of deep learning-based solutions enables the use of compressed domain computer vision processing, with gains in performance and computational complexity over the decompressed domain approach. For point clouds (PCs), these gains have been demonstrated in the single available compressed domain computer vision processing solution, named Compressed Domain PC Classifer, which processes JPEG Pleno PC coding (PCC) compressed streams using a PC classifer largely compatible with the state-of-the-art spatial domain PointGrid classifer. However, the available Compressed Domain PC Classifer presents strong limitations by imposing a single, specifc input size which is associated to specifc JPEG Pleno PCC confgurations; this limits the compression performance as these confgurations are not ideal for all PCs due to their diferent characteristics, notably density. To overcome these limitations, this paper proposes the frst Adaptive Compressed Domain PC Classifer solution which includes a novel adaptive bridge model that allows to process the JPEG Pleno PCC encoded bit streams using diferent coding confgurations, now maximizing the compression efciency. Experimental results show that the novel Adaptive Compressed Domain PC Classifer allows JPEG PCC to achieve better compression performance by not imposing a single, specifc coding confguration for all PCs, regardless of its diferent characteristics. Moreover, the added adaptability power can achieve slightly better PC classifcation performance than the previous Compressed Domain PC Classifer and largely better PC classifcation performance (and lower number of weights) than the PointGrid PC classifer working in the decompressed domain.SpringerOpenRepositório IC-OnlineSeleem, AbdelrahmanGuarda, André F. R.Rodrigues, Nuno M. M.Pereira, Fernando2025-01-08T15:01:54Z2024-06-082024-12-28T10:15:07Z2024-06-08T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/10358enghttps://doi.org/10.1186/s13640-024-00631-6info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T15:19:29Zoai:iconline.ipleiria.pt:10400.8/10358Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:58:06.127302Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Adaptive bridge model for compressed domain point cloud classification |
| title |
Adaptive bridge model for compressed domain point cloud classification |
| spellingShingle |
Adaptive bridge model for compressed domain point cloud classification Seleem, Abdelrahman Point cloud Classifcation Coding Compressed domain Deep learning |
| title_short |
Adaptive bridge model for compressed domain point cloud classification |
| title_full |
Adaptive bridge model for compressed domain point cloud classification |
| title_fullStr |
Adaptive bridge model for compressed domain point cloud classification |
| title_full_unstemmed |
Adaptive bridge model for compressed domain point cloud classification |
| title_sort |
Adaptive bridge model for compressed domain point cloud classification |
| author |
Seleem, Abdelrahman |
| author_facet |
Seleem, Abdelrahman Guarda, André F. R. Rodrigues, Nuno M. M. Pereira, Fernando |
| author_role |
author |
| author2 |
Guarda, André F. R. Rodrigues, Nuno M. M. Pereira, Fernando |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
Repositório IC-Online |
| dc.contributor.author.fl_str_mv |
Seleem, Abdelrahman Guarda, André F. R. Rodrigues, Nuno M. M. Pereira, Fernando |
| dc.subject.por.fl_str_mv |
Point cloud Classifcation Coding Compressed domain Deep learning |
| topic |
Point cloud Classifcation Coding Compressed domain Deep learning |
| description |
The recent adoption of deep learning-based models for the processing and coding of multimedia signals has brought noticeable gains in performance, which have established deep learning-based solutions as the uncontested state-of-the-art both for computer vision tasks, targeting machine consumption, as well as, more recently, coding applications, targeting human visualization. Traditionally, applications requiring both coding and computer vision processing require frst decoding the bitstream and then applying the computer vision methods to the decompressed multimedia signals. However, the adoption of deep learning-based solutions enables the use of compressed domain computer vision processing, with gains in performance and computational complexity over the decompressed domain approach. For point clouds (PCs), these gains have been demonstrated in the single available compressed domain computer vision processing solution, named Compressed Domain PC Classifer, which processes JPEG Pleno PC coding (PCC) compressed streams using a PC classifer largely compatible with the state-of-the-art spatial domain PointGrid classifer. However, the available Compressed Domain PC Classifer presents strong limitations by imposing a single, specifc input size which is associated to specifc JPEG Pleno PCC confgurations; this limits the compression performance as these confgurations are not ideal for all PCs due to their diferent characteristics, notably density. To overcome these limitations, this paper proposes the frst Adaptive Compressed Domain PC Classifer solution which includes a novel adaptive bridge model that allows to process the JPEG Pleno PCC encoded bit streams using diferent coding confgurations, now maximizing the compression efciency. Experimental results show that the novel Adaptive Compressed Domain PC Classifer allows JPEG PCC to achieve better compression performance by not imposing a single, specifc coding confguration for all PCs, regardless of its diferent characteristics. Moreover, the added adaptability power can achieve slightly better PC classifcation performance than the previous Compressed Domain PC Classifer and largely better PC classifcation performance (and lower number of weights) than the PointGrid PC classifer working in the decompressed domain. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-06-08 2024-12-28T10:15:07Z 2024-06-08T00:00:00Z 2025-01-08T15:01:54Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.8/10358 |
| url |
http://hdl.handle.net/10400.8/10358 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://doi.org/10.1186/s13640-024-00631-6 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
SpringerOpen |
| publisher.none.fl_str_mv |
SpringerOpen |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598996892876800 |