Adaptive bridge model for compressed domain point cloud classification

Bibliographic Details
Main Author: Seleem, Abdelrahman
Publication Date: 2024
Other Authors: Guarda, André F. R., Rodrigues, Nuno M. M., Pereira, Fernando
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.8/10358
Summary: The recent adoption of deep learning-based models for the processing and coding of multimedia signals has brought noticeable gains in performance, which have established deep learning-based solutions as the uncontested state-of-the-art both for computer vision tasks, targeting machine consumption, as well as, more recently, coding applications, targeting human visualization. Traditionally, applications requiring both coding and computer vision processing require frst decoding the bitstream and then applying the computer vision methods to the decompressed multimedia signals. However, the adoption of deep learning-based solutions enables the use of compressed domain computer vision processing, with gains in performance and computational complexity over the decompressed domain approach. For point clouds (PCs), these gains have been demonstrated in the single available compressed domain computer vision processing solution, named Compressed Domain PC Classifer, which processes JPEG Pleno PC coding (PCC) compressed streams using a PC classifer largely compatible with the state-of-the-art spatial domain PointGrid classifer. However, the available Compressed Domain PC Classifer presents strong limitations by imposing a single, specifc input size which is associated to specifc JPEG Pleno PCC confgurations; this limits the compression performance as these confgurations are not ideal for all PCs due to their diferent characteristics, notably density. To overcome these limitations, this paper proposes the frst Adaptive Compressed Domain PC Classifer solution which includes a novel adaptive bridge model that allows to process the JPEG Pleno PCC encoded bit streams using diferent coding confgurations, now maximizing the compression efciency. Experimental results show that the novel Adaptive Compressed Domain PC Classifer allows JPEG PCC to achieve better compression performance by not imposing a single, specifc coding confguration for all PCs, regardless of its diferent characteristics. Moreover, the added adaptability power can achieve slightly better PC classifcation performance than the previous Compressed Domain PC Classifer and largely better PC classifcation performance (and lower number of weights) than the PointGrid PC classifer working in the decompressed domain.
id RCAP_1d485ca68563b80d0047f2c340144a2f
oai_identifier_str oai:iconline.ipleiria.pt:10400.8/10358
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Adaptive bridge model for compressed domain point cloud classificationPoint cloudClassifcationCodingCompressed domainDeep learningThe recent adoption of deep learning-based models for the processing and coding of multimedia signals has brought noticeable gains in performance, which have established deep learning-based solutions as the uncontested state-of-the-art both for computer vision tasks, targeting machine consumption, as well as, more recently, coding applications, targeting human visualization. Traditionally, applications requiring both coding and computer vision processing require frst decoding the bitstream and then applying the computer vision methods to the decompressed multimedia signals. However, the adoption of deep learning-based solutions enables the use of compressed domain computer vision processing, with gains in performance and computational complexity over the decompressed domain approach. For point clouds (PCs), these gains have been demonstrated in the single available compressed domain computer vision processing solution, named Compressed Domain PC Classifer, which processes JPEG Pleno PC coding (PCC) compressed streams using a PC classifer largely compatible with the state-of-the-art spatial domain PointGrid classifer. However, the available Compressed Domain PC Classifer presents strong limitations by imposing a single, specifc input size which is associated to specifc JPEG Pleno PCC confgurations; this limits the compression performance as these confgurations are not ideal for all PCs due to their diferent characteristics, notably density. To overcome these limitations, this paper proposes the frst Adaptive Compressed Domain PC Classifer solution which includes a novel adaptive bridge model that allows to process the JPEG Pleno PCC encoded bit streams using diferent coding confgurations, now maximizing the compression efciency. Experimental results show that the novel Adaptive Compressed Domain PC Classifer allows JPEG PCC to achieve better compression performance by not imposing a single, specifc coding confguration for all PCs, regardless of its diferent characteristics. Moreover, the added adaptability power can achieve slightly better PC classifcation performance than the previous Compressed Domain PC Classifer and largely better PC classifcation performance (and lower number of weights) than the PointGrid PC classifer working in the decompressed domain.SpringerOpenRepositório IC-OnlineSeleem, AbdelrahmanGuarda, André F. R.Rodrigues, Nuno M. M.Pereira, Fernando2025-01-08T15:01:54Z2024-06-082024-12-28T10:15:07Z2024-06-08T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/10358enghttps://doi.org/10.1186/s13640-024-00631-6info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T15:19:29Zoai:iconline.ipleiria.pt:10400.8/10358Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:58:06.127302Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Adaptive bridge model for compressed domain point cloud classification
title Adaptive bridge model for compressed domain point cloud classification
spellingShingle Adaptive bridge model for compressed domain point cloud classification
Seleem, Abdelrahman
Point cloud
Classifcation
Coding
Compressed domain
Deep learning
title_short Adaptive bridge model for compressed domain point cloud classification
title_full Adaptive bridge model for compressed domain point cloud classification
title_fullStr Adaptive bridge model for compressed domain point cloud classification
title_full_unstemmed Adaptive bridge model for compressed domain point cloud classification
title_sort Adaptive bridge model for compressed domain point cloud classification
author Seleem, Abdelrahman
author_facet Seleem, Abdelrahman
Guarda, André F. R.
Rodrigues, Nuno M. M.
Pereira, Fernando
author_role author
author2 Guarda, André F. R.
Rodrigues, Nuno M. M.
Pereira, Fernando
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório IC-Online
dc.contributor.author.fl_str_mv Seleem, Abdelrahman
Guarda, André F. R.
Rodrigues, Nuno M. M.
Pereira, Fernando
dc.subject.por.fl_str_mv Point cloud
Classifcation
Coding
Compressed domain
Deep learning
topic Point cloud
Classifcation
Coding
Compressed domain
Deep learning
description The recent adoption of deep learning-based models for the processing and coding of multimedia signals has brought noticeable gains in performance, which have established deep learning-based solutions as the uncontested state-of-the-art both for computer vision tasks, targeting machine consumption, as well as, more recently, coding applications, targeting human visualization. Traditionally, applications requiring both coding and computer vision processing require frst decoding the bitstream and then applying the computer vision methods to the decompressed multimedia signals. However, the adoption of deep learning-based solutions enables the use of compressed domain computer vision processing, with gains in performance and computational complexity over the decompressed domain approach. For point clouds (PCs), these gains have been demonstrated in the single available compressed domain computer vision processing solution, named Compressed Domain PC Classifer, which processes JPEG Pleno PC coding (PCC) compressed streams using a PC classifer largely compatible with the state-of-the-art spatial domain PointGrid classifer. However, the available Compressed Domain PC Classifer presents strong limitations by imposing a single, specifc input size which is associated to specifc JPEG Pleno PCC confgurations; this limits the compression performance as these confgurations are not ideal for all PCs due to their diferent characteristics, notably density. To overcome these limitations, this paper proposes the frst Adaptive Compressed Domain PC Classifer solution which includes a novel adaptive bridge model that allows to process the JPEG Pleno PCC encoded bit streams using diferent coding confgurations, now maximizing the compression efciency. Experimental results show that the novel Adaptive Compressed Domain PC Classifer allows JPEG PCC to achieve better compression performance by not imposing a single, specifc coding confguration for all PCs, regardless of its diferent characteristics. Moreover, the added adaptability power can achieve slightly better PC classifcation performance than the previous Compressed Domain PC Classifer and largely better PC classifcation performance (and lower number of weights) than the PointGrid PC classifer working in the decompressed domain.
publishDate 2024
dc.date.none.fl_str_mv 2024-06-08
2024-12-28T10:15:07Z
2024-06-08T00:00:00Z
2025-01-08T15:01:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.8/10358
url http://hdl.handle.net/10400.8/10358
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://doi.org/10.1186/s13640-024-00631-6
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SpringerOpen
publisher.none.fl_str_mv SpringerOpen
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598996892876800