Interaction studies of Gla-rich protein with bone morphogenetic proteins

Bibliographic Details
Main Author: Santos, Lúcia Alexandra Rosa dos
Publication Date: 2014
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.1/7922
Summary: Cardiovascular disease is one of the main causes of death worldwide. Vascular calcification is a risk factor that strongly contributes to disease progression and to which the vitamin-K dependent family of proteins (VKDPs) appear to play a major role. Gla-rich protein, or GRP, was the last member of the VKDPs to be identified and has been associated with ectopic calcification in tissues such as skin, vasculature and cartilage in cases of dermatomyositis and pseudoxanthoma elasticum, chronic kidney disease and osteoarthritis, respectively, suggesting a possible role in the development and/or regulation of pathological calcification. Matrix Gla protein (MGP), another VKDP, is a recognized inhibitor of soft tissue calcification. Although its inhibitory mechanism is still not completely understood, distinct studies reported the binding of MGP to bone morphogenetic proteins (BMPs), known bone formation promoters in both skeletal and vascular tissue, antagonizing its function. However, these mechanisms of action are not enough to explain the numerous reported cases of calcification in humans leading us to hypothesize GRP as one of the missing regulators of calcification in soft tissues. Considering the reported data on MGP-BMP-2 interaction, and since an effect of BMP-2 on GRP expression has been previously demonstrated, we have focused in understanding the importance of GRP in calcification inhibition via interaction with MGP and BMP-2, either as a duplet or as a part of a larger protein complex. To further investigate these possibilities, we have engineered HEK293T cells to overexpress GRP and MGP and used their conditioned media in addition to recombinant BMP-2. Our immunoprecipitation assays demonstrate, for the first time, an interaction between GRP and BMP-2, supporting our hypothesis of GRP acting as a regulator of ectopic calcification via an interaction with BMP-2. Although our novel data indicate that GRP-BMP-2 interaction could be determining to vascular calcification, further functional studies will soon be performed to prove this hypothesis.
id RCAP_1c8e6ddbee95d6fc6b8f34959e949c50
oai_identifier_str oai:sapientia.ualg.pt:10400.1/7922
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Interaction studies of Gla-rich protein with bone morphogenetic proteinsCiências biomédicasProteínasVitamina KProteína GlaArtériasDoenças cardiovascularesCardiovascular disease is one of the main causes of death worldwide. Vascular calcification is a risk factor that strongly contributes to disease progression and to which the vitamin-K dependent family of proteins (VKDPs) appear to play a major role. Gla-rich protein, or GRP, was the last member of the VKDPs to be identified and has been associated with ectopic calcification in tissues such as skin, vasculature and cartilage in cases of dermatomyositis and pseudoxanthoma elasticum, chronic kidney disease and osteoarthritis, respectively, suggesting a possible role in the development and/or regulation of pathological calcification. Matrix Gla protein (MGP), another VKDP, is a recognized inhibitor of soft tissue calcification. Although its inhibitory mechanism is still not completely understood, distinct studies reported the binding of MGP to bone morphogenetic proteins (BMPs), known bone formation promoters in both skeletal and vascular tissue, antagonizing its function. However, these mechanisms of action are not enough to explain the numerous reported cases of calcification in humans leading us to hypothesize GRP as one of the missing regulators of calcification in soft tissues. Considering the reported data on MGP-BMP-2 interaction, and since an effect of BMP-2 on GRP expression has been previously demonstrated, we have focused in understanding the importance of GRP in calcification inhibition via interaction with MGP and BMP-2, either as a duplet or as a part of a larger protein complex. To further investigate these possibilities, we have engineered HEK293T cells to overexpress GRP and MGP and used their conditioned media in addition to recombinant BMP-2. Our immunoprecipitation assays demonstrate, for the first time, an interaction between GRP and BMP-2, supporting our hypothesis of GRP acting as a regulator of ectopic calcification via an interaction with BMP-2. Although our novel data indicate that GRP-BMP-2 interaction could be determining to vascular calcification, further functional studies will soon be performed to prove this hypothesis.Simes, DinaSapientiaSantos, Lúcia Alexandra Rosa dos2016-04-01T15:50:40Z201420142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.1/7922urn:tid:202213269enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:49:26Zoai:sapientia.ualg.pt:10400.1/7922Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:37:44.451909Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Interaction studies of Gla-rich protein with bone morphogenetic proteins
title Interaction studies of Gla-rich protein with bone morphogenetic proteins
spellingShingle Interaction studies of Gla-rich protein with bone morphogenetic proteins
Santos, Lúcia Alexandra Rosa dos
Ciências biomédicas
Proteínas
Vitamina K
Proteína Gla
Artérias
Doenças cardiovasculares
title_short Interaction studies of Gla-rich protein with bone morphogenetic proteins
title_full Interaction studies of Gla-rich protein with bone morphogenetic proteins
title_fullStr Interaction studies of Gla-rich protein with bone morphogenetic proteins
title_full_unstemmed Interaction studies of Gla-rich protein with bone morphogenetic proteins
title_sort Interaction studies of Gla-rich protein with bone morphogenetic proteins
author Santos, Lúcia Alexandra Rosa dos
author_facet Santos, Lúcia Alexandra Rosa dos
author_role author
dc.contributor.none.fl_str_mv Simes, Dina
Sapientia
dc.contributor.author.fl_str_mv Santos, Lúcia Alexandra Rosa dos
dc.subject.por.fl_str_mv Ciências biomédicas
Proteínas
Vitamina K
Proteína Gla
Artérias
Doenças cardiovasculares
topic Ciências biomédicas
Proteínas
Vitamina K
Proteína Gla
Artérias
Doenças cardiovasculares
description Cardiovascular disease is one of the main causes of death worldwide. Vascular calcification is a risk factor that strongly contributes to disease progression and to which the vitamin-K dependent family of proteins (VKDPs) appear to play a major role. Gla-rich protein, or GRP, was the last member of the VKDPs to be identified and has been associated with ectopic calcification in tissues such as skin, vasculature and cartilage in cases of dermatomyositis and pseudoxanthoma elasticum, chronic kidney disease and osteoarthritis, respectively, suggesting a possible role in the development and/or regulation of pathological calcification. Matrix Gla protein (MGP), another VKDP, is a recognized inhibitor of soft tissue calcification. Although its inhibitory mechanism is still not completely understood, distinct studies reported the binding of MGP to bone morphogenetic proteins (BMPs), known bone formation promoters in both skeletal and vascular tissue, antagonizing its function. However, these mechanisms of action are not enough to explain the numerous reported cases of calcification in humans leading us to hypothesize GRP as one of the missing regulators of calcification in soft tissues. Considering the reported data on MGP-BMP-2 interaction, and since an effect of BMP-2 on GRP expression has been previously demonstrated, we have focused in understanding the importance of GRP in calcification inhibition via interaction with MGP and BMP-2, either as a duplet or as a part of a larger protein complex. To further investigate these possibilities, we have engineered HEK293T cells to overexpress GRP and MGP and used their conditioned media in addition to recombinant BMP-2. Our immunoprecipitation assays demonstrate, for the first time, an interaction between GRP and BMP-2, supporting our hypothesis of GRP acting as a regulator of ectopic calcification via an interaction with BMP-2. Although our novel data indicate that GRP-BMP-2 interaction could be determining to vascular calcification, further functional studies will soon be performed to prove this hypothesis.
publishDate 2014
dc.date.none.fl_str_mv 2014
2014
2014-01-01T00:00:00Z
2016-04-01T15:50:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/7922
urn:tid:202213269
url http://hdl.handle.net/10400.1/7922
identifier_str_mv urn:tid:202213269
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598753612759040