Two steps closer to automated canine hip dysplasia diagnosis
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2022 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | https://hdl.handle.net/10348/13336 |
Resumo: | Canine hip dysplasia is a hereditary disease that progressively leads to instability and laxity of the hip joint, which is to say a poor congruence between the femoral head and the acetabulum. This disease mainly affects large dogs and represents 29% of all orthopaedic cases. This factor, combined with the high debilitating consequences of this disease, demonstrates the need for a new solution to prevent these cases. Since this disease has no cure, selective breeding is the only way to reduce its incidence. Therefore, the earlier the diagnosis, the greater the likelihood of preventing breeding and avoiding the genetic transmission of this condition. Currently, the diagnosis of this disease is performed through the visual analysis of radiographic images by specialists. This diagnosis is intrinsically subjective, depending on the scrutiny and experience of the specialist. Recently, the emergence of Deep Learning has made it possible to build support systems for medical diagnosis, reaching performance levels comparable to or superior to human specialists. The present dissertation intends to lay foundations, in two aspects, for the construction of software for the automated diagnosis of this disease. First, Deep Learning algorithms were developed for femur and acetabulum segmentation. The correct segmentation of these two bone structures allows an objective and quantifiable measure of hip joint congruence, an important metric for the final diagnosis. Nevertheless, the construction of these algorithms has the premise of needing a large volume of images annotated by specialists. Furthermore, semantic annotation of the femur and acetabulum is a very time-consuming and rigorous task. As such, in a second moment, Active Learning techniques were explored. These techniques aim to efficiently select which unannotated images will benefit the model the most. In other words, these techniques aim to maximise the performance of a model with the smallest possible number of annotated images.The segmentation models’ results are promising, reaching state-of-the-art performance with a dice score of 0.981, surpassing a literature model dice score of 0.970, and more significant gains in harder-to-segment classes. The Active Learning results reveal that a proposed method leads to an average 10.8% performance increase over a baseline and a possible reduction of almost 19% of data labelled by veterinary professionals, thus reducing their time spent in the annotation process. |
| id |
RCAP_1017a6a3ae424dbf2d0aaa300dfa15e8 |
|---|---|
| oai_identifier_str |
oai:repositorio.utad.pt:10348/13336 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Two steps closer to automated canine hip dysplasia diagnosiscanine hip dysplasiamachine learningdeep learningsegmentationmedical imagesCanine hip dysplasia is a hereditary disease that progressively leads to instability and laxity of the hip joint, which is to say a poor congruence between the femoral head and the acetabulum. This disease mainly affects large dogs and represents 29% of all orthopaedic cases. This factor, combined with the high debilitating consequences of this disease, demonstrates the need for a new solution to prevent these cases. Since this disease has no cure, selective breeding is the only way to reduce its incidence. Therefore, the earlier the diagnosis, the greater the likelihood of preventing breeding and avoiding the genetic transmission of this condition. Currently, the diagnosis of this disease is performed through the visual analysis of radiographic images by specialists. This diagnosis is intrinsically subjective, depending on the scrutiny and experience of the specialist. Recently, the emergence of Deep Learning has made it possible to build support systems for medical diagnosis, reaching performance levels comparable to or superior to human specialists. The present dissertation intends to lay foundations, in two aspects, for the construction of software for the automated diagnosis of this disease. First, Deep Learning algorithms were developed for femur and acetabulum segmentation. The correct segmentation of these two bone structures allows an objective and quantifiable measure of hip joint congruence, an important metric for the final diagnosis. Nevertheless, the construction of these algorithms has the premise of needing a large volume of images annotated by specialists. Furthermore, semantic annotation of the femur and acetabulum is a very time-consuming and rigorous task. As such, in a second moment, Active Learning techniques were explored. These techniques aim to efficiently select which unannotated images will benefit the model the most. In other words, these techniques aim to maximise the performance of a model with the smallest possible number of annotated images.The segmentation models’ results are promising, reaching state-of-the-art performance with a dice score of 0.981, surpassing a literature model dice score of 0.970, and more significant gains in harder-to-segment classes. The Active Learning results reveal that a proposed method leads to an average 10.8% performance increase over a baseline and a possible reduction of almost 19% of data labelled by veterinary professionals, thus reducing their time spent in the annotation process.A displasia da anca em cães é uma doença hereditária, que se manifesta de forma progressiva levando à instabilidade e laxidão da articulação coxo-femural, ou seja, uma pobre congruência entre a cabeça do fémur e do acetábulo. Esta doença afeta principalmente cães de grande porte, e representa 29% de todos os casos ortopédicos. Este fator, aliado às grandes consequências debilitantes desta doença demonstra a necessidade de uma nova solução para prevenir estes casos. Devido a esta doença não ter cura, a reprodução seletiva é a única forma de reduzir a incidência da mesma. Portanto, quanto mais cedo for feito o diagnóstico, maior a probabilidade de prevenir a reprodução e evitar a transmissão genética desta doença. Atualmente, o diagnóstico é realizado através da análise visual de imagens radiográficas por especialistas. Este diagnóstico é intrinsecamente subjetivo, dependendo do escrutínio e experiência do especialista. Recentemente, a emergência do Deep Learning tem permitido construir sistemas de apoio ao diagnóstico médico, atingindo níveis de desempenho equiparáveis ou superiores a especialistas humanos. A presente dissertação pretende viabilizar a construção de um software que permita o diagnóstico automatizado em duas vertentes. Primeiramente, foram desenvolvidos algoritmos de Deep Learning para a segmentação do fémur e do acetábulo. A correta segmentação destas duas estruturas ósseas permite calcular de forma de objetiva e quantificável o nível de congruência da articulação coxo-femural, uma métrica fundamental para o diagnóstico. Todavia, a construção destes algoritmos tem a premissa de necessitar de um grande volume de imagens anotadas por especialistas. Além disso, a anotação semântica do fémur e do acetábulo é um processo bastante demoroso e rigoroso. Como tal, num segundo momento, foram exploradas técnicas de Active Learning. Estas técnicas visam selecionar, de forma eficiente, quais as imagens não anotadas que mais beneficiarão o modelo. Por outras palavras, estas técnicas intentam maximizar o desempenho de um modelo com o menor número possível de imagens anotadas. Os resultados obtidos pelos modelos de segmentação explorados são altamente promissores, a par do estado da arte, com um dice score de 0.981, ultrapassando os 0.970 de um modelo da literatura, apresentando ainda desempenhos significativamente superiores nas classes mais difíceis de segmentar. Os resultados de Active Learning demonstram que um dos métodos propostos proporciona, em média, um aumento de 10.8% de desempenho em relação a um método baseline e uma possível redução de cerca de 19% do número de imagens anotadas por profissionais veterinários, reduzindo assim o tempo despendido no processo de anotação.2025-02-07T16:22:37Z2022-09-14T00:00:00Z2022-09-142022-11-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfapplication/pdfhttps://hdl.handle.net/10348/13336engSilva, Diogo Emanuel Moreira dainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-02T02:14:41Zoai:repositorio.utad.pt:10348/13336Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:46:42.036194Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Two steps closer to automated canine hip dysplasia diagnosis |
| title |
Two steps closer to automated canine hip dysplasia diagnosis |
| spellingShingle |
Two steps closer to automated canine hip dysplasia diagnosis Silva, Diogo Emanuel Moreira da canine hip dysplasia machine learning deep learning segmentation medical images |
| title_short |
Two steps closer to automated canine hip dysplasia diagnosis |
| title_full |
Two steps closer to automated canine hip dysplasia diagnosis |
| title_fullStr |
Two steps closer to automated canine hip dysplasia diagnosis |
| title_full_unstemmed |
Two steps closer to automated canine hip dysplasia diagnosis |
| title_sort |
Two steps closer to automated canine hip dysplasia diagnosis |
| author |
Silva, Diogo Emanuel Moreira da |
| author_facet |
Silva, Diogo Emanuel Moreira da |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Silva, Diogo Emanuel Moreira da |
| dc.subject.por.fl_str_mv |
canine hip dysplasia machine learning deep learning segmentation medical images |
| topic |
canine hip dysplasia machine learning deep learning segmentation medical images |
| description |
Canine hip dysplasia is a hereditary disease that progressively leads to instability and laxity of the hip joint, which is to say a poor congruence between the femoral head and the acetabulum. This disease mainly affects large dogs and represents 29% of all orthopaedic cases. This factor, combined with the high debilitating consequences of this disease, demonstrates the need for a new solution to prevent these cases. Since this disease has no cure, selective breeding is the only way to reduce its incidence. Therefore, the earlier the diagnosis, the greater the likelihood of preventing breeding and avoiding the genetic transmission of this condition. Currently, the diagnosis of this disease is performed through the visual analysis of radiographic images by specialists. This diagnosis is intrinsically subjective, depending on the scrutiny and experience of the specialist. Recently, the emergence of Deep Learning has made it possible to build support systems for medical diagnosis, reaching performance levels comparable to or superior to human specialists. The present dissertation intends to lay foundations, in two aspects, for the construction of software for the automated diagnosis of this disease. First, Deep Learning algorithms were developed for femur and acetabulum segmentation. The correct segmentation of these two bone structures allows an objective and quantifiable measure of hip joint congruence, an important metric for the final diagnosis. Nevertheless, the construction of these algorithms has the premise of needing a large volume of images annotated by specialists. Furthermore, semantic annotation of the femur and acetabulum is a very time-consuming and rigorous task. As such, in a second moment, Active Learning techniques were explored. These techniques aim to efficiently select which unannotated images will benefit the model the most. In other words, these techniques aim to maximise the performance of a model with the smallest possible number of annotated images.The segmentation models’ results are promising, reaching state-of-the-art performance with a dice score of 0.981, surpassing a literature model dice score of 0.970, and more significant gains in harder-to-segment classes. The Active Learning results reveal that a proposed method leads to an average 10.8% performance increase over a baseline and a possible reduction of almost 19% of data labelled by veterinary professionals, thus reducing their time spent in the annotation process. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-09-14T00:00:00Z 2022-09-14 2022-11-14 2025-02-07T16:22:37Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10348/13336 |
| url |
https://hdl.handle.net/10348/13336 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598319731933184 |