Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary study

Bibliographic Details
Main Author: Bairros, Rita Seixas
Publication Date: 2024
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10071/32919
Summary: Aortic stenosis is a critical cardiovascular condition that can be assessed through echocardiography, with calcium deposits on the aortic valve playing a key role in diagnosis. This dissertation presents a hybrid approach combining deep learning and image processing methods to improve the detection and quantification of aortic valve calcifications. Two main objectives were addressed: (1) detecting and extracting the image region corresponding to the aortic valve, and (2) quantifying calcium deposits within the segmented valve, correlating these results with Agatston scores derived from CT scans. An adapted YOLOv8n model was employed for valve detection, achieving 99.94% precision, 81.82% recall, and a mean Average Precision (mAP) of 92.88%. The region of interest was successfully extracted in all cases using a combination of manual annotations and automated segmentation techniques. For calcium scoring, two approaches were explored: a heuristic method and convolutional neural network (CNN) models. The CNN models captured complex patterns in the echocardiographic images, with the fine-tuned ResNet50 model demonstrating superior performance, achieving a mean absolute error of 1356.56. The heuristic method showed a Pearson correlation of 0.75 with the CT-derived Agatston score, validating its accuracy, especially in patients with higher calcium scores. Additionally, a gender-based analysis revealed that male patients exhibited higher calcium deposits, consistent with existing cardiovascular research. This work shows that combining deep learning with traditional methods can improve the diagnostic process for aortic stenosis, offering potential for timely, precise diagnoses and advancing healthcare system efficiency.
id RCAP_10074fac90a1d4f91d0f46fb6e6032d0
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/32919
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary studyEchocardiographyAortic stenosisCalcium scoringDeep learningProcessamento de imagens -- Image processingEcocardiografiaEstenose aórticaQuantificação de cálcioAortic stenosis is a critical cardiovascular condition that can be assessed through echocardiography, with calcium deposits on the aortic valve playing a key role in diagnosis. This dissertation presents a hybrid approach combining deep learning and image processing methods to improve the detection and quantification of aortic valve calcifications. Two main objectives were addressed: (1) detecting and extracting the image region corresponding to the aortic valve, and (2) quantifying calcium deposits within the segmented valve, correlating these results with Agatston scores derived from CT scans. An adapted YOLOv8n model was employed for valve detection, achieving 99.94% precision, 81.82% recall, and a mean Average Precision (mAP) of 92.88%. The region of interest was successfully extracted in all cases using a combination of manual annotations and automated segmentation techniques. For calcium scoring, two approaches were explored: a heuristic method and convolutional neural network (CNN) models. The CNN models captured complex patterns in the echocardiographic images, with the fine-tuned ResNet50 model demonstrating superior performance, achieving a mean absolute error of 1356.56. The heuristic method showed a Pearson correlation of 0.75 with the CT-derived Agatston score, validating its accuracy, especially in patients with higher calcium scores. Additionally, a gender-based analysis revealed that male patients exhibited higher calcium deposits, consistent with existing cardiovascular research. This work shows that combining deep learning with traditional methods can improve the diagnostic process for aortic stenosis, offering potential for timely, precise diagnoses and advancing healthcare system efficiency.Os depósitos de cálcio na válvula aórtica são um fator crucial no diagnóstico da estenose aórtica, uma condição cardiovascular crítica. Nesta dissertação, propõe-se uma abordagem híbrida que combina técnicas de deep learning com processamento de imagem para melhorar a identificação e quantificação das calcificações na válvula aórtica. Foram estabelecidos dois objetivos principais: (1) detetar e extrair a região da imagem correspondente à válvula aórtica, e (2) quantificar os depósitos de cálcio na válvula segmentada, correlacionando os resultados com os scores de Agatston obtidos em TACs. O modelo YOLOv8n foi adaptado para a deteção da válvula, atingindo 99,94% de precisão, 81,82% de recall e mAP de 92,88%. A extração da região de interesse foi bem-sucedida, utilizando segmentação manual e automática. Para quantificação de cálcio, foram exploradas duas abordagens: uma heurística e CNNs, com a ResNet50 ajustada mostrando erro absoluto médio de 1356,56. A precisão do método heurístico foi validada, especialmente em pacientes com scores de cálcio mais elevados, através de uma correlação de Pearson de 0,75 com os scores de Agatston derivados das TACs. Além disso, uma análise com base no género revelou que os pacientes do sexo masculino apresentavam níveis mais elevados de depósitos de cálcio, em linha com estudos anteriores na área cardiovascular. Este trabalho demonstra como a integração de deep learning e técnicas convencionais pode otimizar o diagnóstico da estenose aórtica, contribuindo para diagnósticos mais rápidos e precisos.2025-01-07T12:09:49Z2024-11-05T00:00:00Z2024-11-052024-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/32919TID:203769180engBairros, Rita Seixasinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-12T01:17:20Zoai:repositorio.iscte-iul.pt:10071/32919Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:38:54.883416Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary study
title Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary study
spellingShingle Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary study
Bairros, Rita Seixas
Echocardiography
Aortic stenosis
Calcium scoring
Deep learning
Processamento de imagens -- Image processing
Ecocardiografia
Estenose aórtica
Quantificação de cálcio
title_short Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary study
title_full Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary study
title_fullStr Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary study
title_full_unstemmed Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary study
title_sort Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary study
author Bairros, Rita Seixas
author_facet Bairros, Rita Seixas
author_role author
dc.contributor.author.fl_str_mv Bairros, Rita Seixas
dc.subject.por.fl_str_mv Echocardiography
Aortic stenosis
Calcium scoring
Deep learning
Processamento de imagens -- Image processing
Ecocardiografia
Estenose aórtica
Quantificação de cálcio
topic Echocardiography
Aortic stenosis
Calcium scoring
Deep learning
Processamento de imagens -- Image processing
Ecocardiografia
Estenose aórtica
Quantificação de cálcio
description Aortic stenosis is a critical cardiovascular condition that can be assessed through echocardiography, with calcium deposits on the aortic valve playing a key role in diagnosis. This dissertation presents a hybrid approach combining deep learning and image processing methods to improve the detection and quantification of aortic valve calcifications. Two main objectives were addressed: (1) detecting and extracting the image region corresponding to the aortic valve, and (2) quantifying calcium deposits within the segmented valve, correlating these results with Agatston scores derived from CT scans. An adapted YOLOv8n model was employed for valve detection, achieving 99.94% precision, 81.82% recall, and a mean Average Precision (mAP) of 92.88%. The region of interest was successfully extracted in all cases using a combination of manual annotations and automated segmentation techniques. For calcium scoring, two approaches were explored: a heuristic method and convolutional neural network (CNN) models. The CNN models captured complex patterns in the echocardiographic images, with the fine-tuned ResNet50 model demonstrating superior performance, achieving a mean absolute error of 1356.56. The heuristic method showed a Pearson correlation of 0.75 with the CT-derived Agatston score, validating its accuracy, especially in patients with higher calcium scores. Additionally, a gender-based analysis revealed that male patients exhibited higher calcium deposits, consistent with existing cardiovascular research. This work shows that combining deep learning with traditional methods can improve the diagnostic process for aortic stenosis, offering potential for timely, precise diagnoses and advancing healthcare system efficiency.
publishDate 2024
dc.date.none.fl_str_mv 2024-11-05T00:00:00Z
2024-11-05
2024-09
2025-01-07T12:09:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/32919
TID:203769180
url http://hdl.handle.net/10071/32919
identifier_str_mv TID:203769180
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598229889941504