Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary study
| Main Author: | |
|---|---|
| Publication Date: | 2024 |
| Format: | Master thesis |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10071/32919 |
Summary: | Aortic stenosis is a critical cardiovascular condition that can be assessed through echocardiography, with calcium deposits on the aortic valve playing a key role in diagnosis. This dissertation presents a hybrid approach combining deep learning and image processing methods to improve the detection and quantification of aortic valve calcifications. Two main objectives were addressed: (1) detecting and extracting the image region corresponding to the aortic valve, and (2) quantifying calcium deposits within the segmented valve, correlating these results with Agatston scores derived from CT scans. An adapted YOLOv8n model was employed for valve detection, achieving 99.94% precision, 81.82% recall, and a mean Average Precision (mAP) of 92.88%. The region of interest was successfully extracted in all cases using a combination of manual annotations and automated segmentation techniques. For calcium scoring, two approaches were explored: a heuristic method and convolutional neural network (CNN) models. The CNN models captured complex patterns in the echocardiographic images, with the fine-tuned ResNet50 model demonstrating superior performance, achieving a mean absolute error of 1356.56. The heuristic method showed a Pearson correlation of 0.75 with the CT-derived Agatston score, validating its accuracy, especially in patients with higher calcium scores. Additionally, a gender-based analysis revealed that male patients exhibited higher calcium deposits, consistent with existing cardiovascular research. This work shows that combining deep learning with traditional methods can improve the diagnostic process for aortic stenosis, offering potential for timely, precise diagnoses and advancing healthcare system efficiency. |
| id |
RCAP_10074fac90a1d4f91d0f46fb6e6032d0 |
|---|---|
| oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/32919 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary studyEchocardiographyAortic stenosisCalcium scoringDeep learningProcessamento de imagens -- Image processingEcocardiografiaEstenose aórticaQuantificação de cálcioAortic stenosis is a critical cardiovascular condition that can be assessed through echocardiography, with calcium deposits on the aortic valve playing a key role in diagnosis. This dissertation presents a hybrid approach combining deep learning and image processing methods to improve the detection and quantification of aortic valve calcifications. Two main objectives were addressed: (1) detecting and extracting the image region corresponding to the aortic valve, and (2) quantifying calcium deposits within the segmented valve, correlating these results with Agatston scores derived from CT scans. An adapted YOLOv8n model was employed for valve detection, achieving 99.94% precision, 81.82% recall, and a mean Average Precision (mAP) of 92.88%. The region of interest was successfully extracted in all cases using a combination of manual annotations and automated segmentation techniques. For calcium scoring, two approaches were explored: a heuristic method and convolutional neural network (CNN) models. The CNN models captured complex patterns in the echocardiographic images, with the fine-tuned ResNet50 model demonstrating superior performance, achieving a mean absolute error of 1356.56. The heuristic method showed a Pearson correlation of 0.75 with the CT-derived Agatston score, validating its accuracy, especially in patients with higher calcium scores. Additionally, a gender-based analysis revealed that male patients exhibited higher calcium deposits, consistent with existing cardiovascular research. This work shows that combining deep learning with traditional methods can improve the diagnostic process for aortic stenosis, offering potential for timely, precise diagnoses and advancing healthcare system efficiency.Os depósitos de cálcio na válvula aórtica são um fator crucial no diagnóstico da estenose aórtica, uma condição cardiovascular crítica. Nesta dissertação, propõe-se uma abordagem híbrida que combina técnicas de deep learning com processamento de imagem para melhorar a identificação e quantificação das calcificações na válvula aórtica. Foram estabelecidos dois objetivos principais: (1) detetar e extrair a região da imagem correspondente à válvula aórtica, e (2) quantificar os depósitos de cálcio na válvula segmentada, correlacionando os resultados com os scores de Agatston obtidos em TACs. O modelo YOLOv8n foi adaptado para a deteção da válvula, atingindo 99,94% de precisão, 81,82% de recall e mAP de 92,88%. A extração da região de interesse foi bem-sucedida, utilizando segmentação manual e automática. Para quantificação de cálcio, foram exploradas duas abordagens: uma heurística e CNNs, com a ResNet50 ajustada mostrando erro absoluto médio de 1356,56. A precisão do método heurístico foi validada, especialmente em pacientes com scores de cálcio mais elevados, através de uma correlação de Pearson de 0,75 com os scores de Agatston derivados das TACs. Além disso, uma análise com base no género revelou que os pacientes do sexo masculino apresentavam níveis mais elevados de depósitos de cálcio, em linha com estudos anteriores na área cardiovascular. Este trabalho demonstra como a integração de deep learning e técnicas convencionais pode otimizar o diagnóstico da estenose aórtica, contribuindo para diagnósticos mais rápidos e precisos.2025-01-07T12:09:49Z2024-11-05T00:00:00Z2024-11-052024-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/32919TID:203769180engBairros, Rita Seixasinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-12T01:17:20Zoai:repositorio.iscte-iul.pt:10071/32919Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:38:54.883416Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary study |
| title |
Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary study |
| spellingShingle |
Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary study Bairros, Rita Seixas Echocardiography Aortic stenosis Calcium scoring Deep learning Processamento de imagens -- Image processing Ecocardiografia Estenose aórtica Quantificação de cálcio |
| title_short |
Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary study |
| title_full |
Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary study |
| title_fullStr |
Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary study |
| title_full_unstemmed |
Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary study |
| title_sort |
Deep learning-based calcium scoring of the aortic valve using 3D TEE: Preliminary study |
| author |
Bairros, Rita Seixas |
| author_facet |
Bairros, Rita Seixas |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Bairros, Rita Seixas |
| dc.subject.por.fl_str_mv |
Echocardiography Aortic stenosis Calcium scoring Deep learning Processamento de imagens -- Image processing Ecocardiografia Estenose aórtica Quantificação de cálcio |
| topic |
Echocardiography Aortic stenosis Calcium scoring Deep learning Processamento de imagens -- Image processing Ecocardiografia Estenose aórtica Quantificação de cálcio |
| description |
Aortic stenosis is a critical cardiovascular condition that can be assessed through echocardiography, with calcium deposits on the aortic valve playing a key role in diagnosis. This dissertation presents a hybrid approach combining deep learning and image processing methods to improve the detection and quantification of aortic valve calcifications. Two main objectives were addressed: (1) detecting and extracting the image region corresponding to the aortic valve, and (2) quantifying calcium deposits within the segmented valve, correlating these results with Agatston scores derived from CT scans. An adapted YOLOv8n model was employed for valve detection, achieving 99.94% precision, 81.82% recall, and a mean Average Precision (mAP) of 92.88%. The region of interest was successfully extracted in all cases using a combination of manual annotations and automated segmentation techniques. For calcium scoring, two approaches were explored: a heuristic method and convolutional neural network (CNN) models. The CNN models captured complex patterns in the echocardiographic images, with the fine-tuned ResNet50 model demonstrating superior performance, achieving a mean absolute error of 1356.56. The heuristic method showed a Pearson correlation of 0.75 with the CT-derived Agatston score, validating its accuracy, especially in patients with higher calcium scores. Additionally, a gender-based analysis revealed that male patients exhibited higher calcium deposits, consistent with existing cardiovascular research. This work shows that combining deep learning with traditional methods can improve the diagnostic process for aortic stenosis, offering potential for timely, precise diagnoses and advancing healthcare system efficiency. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-11-05T00:00:00Z 2024-11-05 2024-09 2025-01-07T12:09:49Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/32919 TID:203769180 |
| url |
http://hdl.handle.net/10071/32919 |
| identifier_str_mv |
TID:203769180 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598229889941504 |