Export Ready — 

Opening black box data mining models using sensitivity analysis

Bibliographic Details
Main Author: Cortez, Paulo
Publication Date: 2011
Other Authors: Embrechts, Mark
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/14836
Summary: There are several supervised learning Data Mining (DM) methods, such as Neural Networks (NN), Support Vector Machines (SVM) and ensembles, that often attain high quality predictions, although the obtained models are difficult to inter- pret by humans. In this paper, we open these black box DM models by using a novel visualization approach that is based on a Sensitivity Analysis (SA) method. In particular, we propose a Global SA (GSA), which extends the applicability of previous SA methods (e.g. to classification tasks), and several visualization techniques (e.g. variable effect characteristic curve), for assessing input relevance and effects on the model’s responses. We show the GSA capabilities by conducting several experiments, using a NN ensemble and SVM model, in both synthetic and real-world datasets.
id RCAP_0f928f26a374f6ca9f080f15cbbb2fdb
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/14836
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Opening black box data mining models using sensitivity analysisThere are several supervised learning Data Mining (DM) methods, such as Neural Networks (NN), Support Vector Machines (SVM) and ensembles, that often attain high quality predictions, although the obtained models are difficult to inter- pret by humans. In this paper, we open these black box DM models by using a novel visualization approach that is based on a Sensitivity Analysis (SA) method. In particular, we propose a Global SA (GSA), which extends the applicability of previous SA methods (e.g. to classification tasks), and several visualization techniques (e.g. variable effect characteristic curve), for assessing input relevance and effects on the model’s responses. We show the GSA capabilities by conducting several experiments, using a NN ensemble and SVM model, in both synthetic and real-world datasets.(undefined)IEEEUniversidade do MinhoCortez, PauloEmbrechts, Mark2011-042011-04-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/14836eng978-1-4244-9926-710.1109/CIDM.2011.5949423http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5949423info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:49:15Zoai:repositorium.sdum.uminho.pt:1822/14836Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:31:19.722209Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Opening black box data mining models using sensitivity analysis
title Opening black box data mining models using sensitivity analysis
spellingShingle Opening black box data mining models using sensitivity analysis
Cortez, Paulo
title_short Opening black box data mining models using sensitivity analysis
title_full Opening black box data mining models using sensitivity analysis
title_fullStr Opening black box data mining models using sensitivity analysis
title_full_unstemmed Opening black box data mining models using sensitivity analysis
title_sort Opening black box data mining models using sensitivity analysis
author Cortez, Paulo
author_facet Cortez, Paulo
Embrechts, Mark
author_role author
author2 Embrechts, Mark
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Cortez, Paulo
Embrechts, Mark
description There are several supervised learning Data Mining (DM) methods, such as Neural Networks (NN), Support Vector Machines (SVM) and ensembles, that often attain high quality predictions, although the obtained models are difficult to inter- pret by humans. In this paper, we open these black box DM models by using a novel visualization approach that is based on a Sensitivity Analysis (SA) method. In particular, we propose a Global SA (GSA), which extends the applicability of previous SA methods (e.g. to classification tasks), and several visualization techniques (e.g. variable effect characteristic curve), for assessing input relevance and effects on the model’s responses. We show the GSA capabilities by conducting several experiments, using a NN ensemble and SVM model, in both synthetic and real-world datasets.
publishDate 2011
dc.date.none.fl_str_mv 2011-04
2011-04-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/14836
url http://hdl.handle.net/1822/14836
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-1-4244-9926-7
10.1109/CIDM.2011.5949423
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5949423
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595367766097920