Opening black box data mining models using sensitivity analysis
Main Author: | |
---|---|
Publication Date: | 2011 |
Other Authors: | |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/1822/14836 |
Summary: | There are several supervised learning Data Mining (DM) methods, such as Neural Networks (NN), Support Vector Machines (SVM) and ensembles, that often attain high quality predictions, although the obtained models are difficult to inter- pret by humans. In this paper, we open these black box DM models by using a novel visualization approach that is based on a Sensitivity Analysis (SA) method. In particular, we propose a Global SA (GSA), which extends the applicability of previous SA methods (e.g. to classification tasks), and several visualization techniques (e.g. variable effect characteristic curve), for assessing input relevance and effects on the model’s responses. We show the GSA capabilities by conducting several experiments, using a NN ensemble and SVM model, in both synthetic and real-world datasets. |
id |
RCAP_0f928f26a374f6ca9f080f15cbbb2fdb |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/14836 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Opening black box data mining models using sensitivity analysisThere are several supervised learning Data Mining (DM) methods, such as Neural Networks (NN), Support Vector Machines (SVM) and ensembles, that often attain high quality predictions, although the obtained models are difficult to inter- pret by humans. In this paper, we open these black box DM models by using a novel visualization approach that is based on a Sensitivity Analysis (SA) method. In particular, we propose a Global SA (GSA), which extends the applicability of previous SA methods (e.g. to classification tasks), and several visualization techniques (e.g. variable effect characteristic curve), for assessing input relevance and effects on the model’s responses. We show the GSA capabilities by conducting several experiments, using a NN ensemble and SVM model, in both synthetic and real-world datasets.(undefined)IEEEUniversidade do MinhoCortez, PauloEmbrechts, Mark2011-042011-04-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/14836eng978-1-4244-9926-710.1109/CIDM.2011.5949423http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5949423info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:49:15Zoai:repositorium.sdum.uminho.pt:1822/14836Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:31:19.722209Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Opening black box data mining models using sensitivity analysis |
title |
Opening black box data mining models using sensitivity analysis |
spellingShingle |
Opening black box data mining models using sensitivity analysis Cortez, Paulo |
title_short |
Opening black box data mining models using sensitivity analysis |
title_full |
Opening black box data mining models using sensitivity analysis |
title_fullStr |
Opening black box data mining models using sensitivity analysis |
title_full_unstemmed |
Opening black box data mining models using sensitivity analysis |
title_sort |
Opening black box data mining models using sensitivity analysis |
author |
Cortez, Paulo |
author_facet |
Cortez, Paulo Embrechts, Mark |
author_role |
author |
author2 |
Embrechts, Mark |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Cortez, Paulo Embrechts, Mark |
description |
There are several supervised learning Data Mining (DM) methods, such as Neural Networks (NN), Support Vector Machines (SVM) and ensembles, that often attain high quality predictions, although the obtained models are difficult to inter- pret by humans. In this paper, we open these black box DM models by using a novel visualization approach that is based on a Sensitivity Analysis (SA) method. In particular, we propose a Global SA (GSA), which extends the applicability of previous SA methods (e.g. to classification tasks), and several visualization techniques (e.g. variable effect characteristic curve), for assessing input relevance and effects on the model’s responses. We show the GSA capabilities by conducting several experiments, using a NN ensemble and SVM model, in both synthetic and real-world datasets. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-04 2011-04-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/14836 |
url |
http://hdl.handle.net/1822/14836 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-1-4244-9926-7 10.1109/CIDM.2011.5949423 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5949423 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595367766097920 |