Soft Computing Methods for Big Data Problems
| Main Author: | |
|---|---|
| Publication Date: | 2014 |
| Other Authors: | , |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10314/2414 |
Summary: | Link para aquisição - http://link.springer.com/chapter/10.1007/978-981-287-134-3_15 |
| id |
RCAP_07f515af7a7ab5c3136b22a38903dbdd |
|---|---|
| oai_identifier_str |
oai:bdigital.ipg.pt:10314/2414 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Soft Computing Methods for Big Data ProblemsGPGPUSoft computingBig dataSOMMBPBiomedical classification problemsLink para aquisição - http://link.springer.com/chapter/10.1007/978-981-287-134-3_15Generally, big data computing deals with massive and high-dimensional data such as DNA microarray data, financial data, medical imagery, satellite imagery, and hyperspectral imagery. Therefore, big data computing needs advanced technologies or methods to solve the issues of computational time to extract valuable information without information loss. In this context, generally, machine learning (ML) algorithms have been considered to learn and find useful and valuable information from large value of data. However, ML algorithms such as neural networks are computationally expensive, and typically, the central processing unit (CPU) is unable to cope with these requirements. Thus, we need a high-performance computer to execute faster solutions such graphics processing unit (GPU). GPUs provide remarkable performance gains compared to CPUs. The GPU is relatively inexpensive with affordable price, availability, and scalability. Since 2006, NVIDIA provides simplification of the GPU programming model with the Compute Unified Device Architecture (CUDA), which supports for accessible programming interfaces and industry-standard languages, such as C and C++. Since then, general-purpose graphics processing unit (GPGPU) using ML algorithms are applied on various applications, including signal and image pattern classification in biomedical area. The importance of fast analysis of detecting cancer or non-cancer becomes the motivation of this study. Accordingly, we proposed soft computing methods, self-organizing map (SOM) and multiple back-propagation (MBP) for big data, particularly on biomedical classification problems. Big data such as gene expression datasets are executed on high-performance computer and Fermi architecture graphics hardware. Based on the experiment, MBP and SOM with GPU-Tesla generate faster computing times than high-performance computer with feasible results in terms of speed and classification performance.Springer2016-07-05T14:17:21Z2016-07-052014-12-12T00:00:00Zbook partinfo:eu-repo/semantics/publishedVersionhttp://hdl.handle.net/10314/2414http://hdl.handle.net/10314/2414eng978-981-287-133-6Hasan, ShafaatunnurShamsuddin, Siti MariyamLopes, Noelinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-05T02:57:46Zoai:bdigital.ipg.pt:10314/2414Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:23:13.447324Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Soft Computing Methods for Big Data Problems |
| title |
Soft Computing Methods for Big Data Problems |
| spellingShingle |
Soft Computing Methods for Big Data Problems Hasan, Shafaatunnur GPGPU Soft computing Big data SOM MBP Biomedical classification problems |
| title_short |
Soft Computing Methods for Big Data Problems |
| title_full |
Soft Computing Methods for Big Data Problems |
| title_fullStr |
Soft Computing Methods for Big Data Problems |
| title_full_unstemmed |
Soft Computing Methods for Big Data Problems |
| title_sort |
Soft Computing Methods for Big Data Problems |
| author |
Hasan, Shafaatunnur |
| author_facet |
Hasan, Shafaatunnur Shamsuddin, Siti Mariyam Lopes, Noel |
| author_role |
author |
| author2 |
Shamsuddin, Siti Mariyam Lopes, Noel |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Hasan, Shafaatunnur Shamsuddin, Siti Mariyam Lopes, Noel |
| dc.subject.por.fl_str_mv |
GPGPU Soft computing Big data SOM MBP Biomedical classification problems |
| topic |
GPGPU Soft computing Big data SOM MBP Biomedical classification problems |
| description |
Link para aquisição - http://link.springer.com/chapter/10.1007/978-981-287-134-3_15 |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-12-12T00:00:00Z 2016-07-05T14:17:21Z 2016-07-05 |
| dc.type.driver.fl_str_mv |
book part |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10314/2414 http://hdl.handle.net/10314/2414 |
| url |
http://hdl.handle.net/10314/2414 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
978-981-287-133-6 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598063165308928 |