id RCAP_01d9528e3859131b9ae9715aa02276cb
oai_identifier_str oai:run.unl.pt:10362/165283
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Osteoporosis screening using machine learning and electromagnetic wavesGeneralSDG 17 - Partnerships for the GoalsPublisher Copyright: © 2023, Springer Nature Limited.Osteoporosis is a disease characterized by impairment of bone microarchitecture that causes high socioeconomic impacts in the world because of fractures and hospitalizations. Although dual-energy X-ray absorptiometry (DXA) is the gold standard for diagnosing the disease, access to DXA in developing countries is still limited due to its high cost, being present only in specialized hospitals. In this paper, we analyze the performance of Osseus, a low-cost portable device based on electromagnetic waves that measures the attenuation of the signal that crosses the medial phalanx of a patient’s middle finger and was developed for osteoporosis screening. The analysis is carried out by predicting changes in bone mineral density using Osseus measurements and additional common risk factors used as input features to a set of supervised classification models, while the results from DXA are taken as target (real) values during the training of the machine learning algorithms. The dataset consisted of 505 patients who underwent osteoporosis screening with both devices (DXA and Osseus), of whom 21.8% were healthy and 78.2% had low bone mineral density or osteoporosis. A cross-validation with k-fold = 5 was considered in model training, while 20% of the whole dataset was used for testing. The obtained performance of the best model (Random Forest) presented a sensitivity of 0.853, a specificity of 0.879, and an F1 of 0.859. Since the Random Forest (RF) algorithm allows some interpretability of its results (through the impurity check), we were able to identify the most important variables in the classification of osteoporosis. The results showed that the most important variables were age, body mass index, and the signal attenuation provided by Osseus. The RF model, when used together with Osseus measurements, is effective in screening patients and facilitates the early diagnosis of osteoporosis. The main advantages of such early screening are the reduction of costs associated with exams, surgeries, treatments, and hospitalizations, as well as improved quality of life for patients.DEE - Departamento de Engenharia Electrotécnica e de ComputadoresRUNAlbuquerque, Gabriela A.Carvalho, Dionísio D. A.Cruz, Agnaldo S.Machado, Guilherme M.Gendriz, Ignácio S.Fernandes, Felipe R. S.Barbalho, Ingridy M. P.Santos, Marquiony M.Teixeira, César A. D.Henriques, Jorge M. O.Gil, PauloNeto, Adrião D. D.Campos, Antonio L. P. S.Lima, Josivan G.Paiva, Jailton C.Morais, Antonio H. F.Lima, Thaisa SantosValentim, Ricardo A. M.2024-03-22T00:34:08Z2023-122023-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article9application/pdfhttp://hdl.handle.net/10362/165283eng2045-2322PURE: 86047339https://doi.org/10.1038/s41598-023-40104-winfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:19:50Zoai:run.unl.pt:10362/165283Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:50:38.082284Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Osteoporosis screening using machine learning and electromagnetic waves
title Osteoporosis screening using machine learning and electromagnetic waves
spellingShingle Osteoporosis screening using machine learning and electromagnetic waves
Albuquerque, Gabriela A.
General
SDG 17 - Partnerships for the Goals
title_short Osteoporosis screening using machine learning and electromagnetic waves
title_full Osteoporosis screening using machine learning and electromagnetic waves
title_fullStr Osteoporosis screening using machine learning and electromagnetic waves
title_full_unstemmed Osteoporosis screening using machine learning and electromagnetic waves
title_sort Osteoporosis screening using machine learning and electromagnetic waves
author Albuquerque, Gabriela A.
author_facet Albuquerque, Gabriela A.
Carvalho, Dionísio D. A.
Cruz, Agnaldo S.
Machado, Guilherme M.
Gendriz, Ignácio S.
Fernandes, Felipe R. S.
Barbalho, Ingridy M. P.
Santos, Marquiony M.
Teixeira, César A. D.
Henriques, Jorge M. O.
Gil, Paulo
Neto, Adrião D. D.
Campos, Antonio L. P. S.
Lima, Josivan G.
Paiva, Jailton C.
Morais, Antonio H. F.
Lima, Thaisa Santos
Valentim, Ricardo A. M.
author_role author
author2 Carvalho, Dionísio D. A.
Cruz, Agnaldo S.
Machado, Guilherme M.
Gendriz, Ignácio S.
Fernandes, Felipe R. S.
Barbalho, Ingridy M. P.
Santos, Marquiony M.
Teixeira, César A. D.
Henriques, Jorge M. O.
Gil, Paulo
Neto, Adrião D. D.
Campos, Antonio L. P. S.
Lima, Josivan G.
Paiva, Jailton C.
Morais, Antonio H. F.
Lima, Thaisa Santos
Valentim, Ricardo A. M.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv DEE - Departamento de Engenharia Electrotécnica e de Computadores
RUN
dc.contributor.author.fl_str_mv Albuquerque, Gabriela A.
Carvalho, Dionísio D. A.
Cruz, Agnaldo S.
Machado, Guilherme M.
Gendriz, Ignácio S.
Fernandes, Felipe R. S.
Barbalho, Ingridy M. P.
Santos, Marquiony M.
Teixeira, César A. D.
Henriques, Jorge M. O.
Gil, Paulo
Neto, Adrião D. D.
Campos, Antonio L. P. S.
Lima, Josivan G.
Paiva, Jailton C.
Morais, Antonio H. F.
Lima, Thaisa Santos
Valentim, Ricardo A. M.
dc.subject.por.fl_str_mv General
SDG 17 - Partnerships for the Goals
topic General
SDG 17 - Partnerships for the Goals
description Publisher Copyright: © 2023, Springer Nature Limited.
publishDate 2023
dc.date.none.fl_str_mv 2023-12
2023-12-01T00:00:00Z
2024-03-22T00:34:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/165283
url http://hdl.handle.net/10362/165283
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2045-2322
PURE: 86047339
https://doi.org/10.1038/s41598-023-40104-w
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 9
application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597004141297664