Employee turnover intention - Mapping profiles under a decision tree perspective

Detalhes bibliográficos
Autor(a) principal: Soares, Vinícius Gomes
Data de Publicação: 2022
Outros Autores: Alcázar, José de Jesús Pérez, Ferreira, Fernando Fagundes
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Redeca
Texto Completo: https://revistas.pucsp.br/index.php/redeca/article/view/58575
Resumo: This work aims to map some profiles having more propensity to quit prematurely a company. The analysis is important because affects the productivity of employees and it represents a high cost for companies around the world. The research applies a decision tree model in a study database of public domain with 1470 records, where it is possible to group profiles under 38 different variables to understand what can influence more the turnover. The result is a model with 81% of accuracy which has identified employees working overtime and new hires in the sales executive position with a higher risk of quitting prematurely the company. In some modeling approaches it is necessary focusing more on interpretability over performance. As the goal of this research is to map and understand key factors of turnover, the decision tree model is ideal. However, the model has a recall of 27%, which means that can predict about 1/3 of turnover cases. This paper contributes with a true modeling application towards People Analytics, sharing openly the model performance and discussing the features related to turnover. Companies can adapt this study in their databases in order to trace employees in turnover risk groups.
id PUC_SP-18_c3b4612764d549f0da6518b3ff9da440
oai_identifier_str oai:ojs.pkp.sfu.ca:article/58575
network_acronym_str PUC_SP-18
network_name_str Redeca
repository_id_str
spelling Employee turnover intention - Mapping profiles under a decision tree perspectiveIntenção de rotatividade de funcionários - Mapeamento de perfis sob uma árvore de decisãoPeople AnalyticsHR AnalyticsTurnoverDecision TreesAnálise de PessoasAnálise de RHRotatividadeÀrvores de DecisãoThis work aims to map some profiles having more propensity to quit prematurely a company. The analysis is important because affects the productivity of employees and it represents a high cost for companies around the world. The research applies a decision tree model in a study database of public domain with 1470 records, where it is possible to group profiles under 38 different variables to understand what can influence more the turnover. The result is a model with 81% of accuracy which has identified employees working overtime and new hires in the sales executive position with a higher risk of quitting prematurely the company. In some modeling approaches it is necessary focusing more on interpretability over performance. As the goal of this research is to map and understand key factors of turnover, the decision tree model is ideal. However, the model has a recall of 27%, which means that can predict about 1/3 of turnover cases. This paper contributes with a true modeling application towards People Analytics, sharing openly the model performance and discussing the features related to turnover. Companies can adapt this study in their databases in order to trace employees in turnover risk groups.Este trabalho tem como objetivo mapear alguns perfis com maior propensão a sair prematuramente de uma empresa. A análise é importante porque afeta a produtividade dos funcionários e representa um alto custo para empresas em todo o mundo. A pesquisa aplica um modelo de árvore de decisão em um banco de dados de estudo de domínio público com 1470 registros, onde é possível agrupar perfis sob 38 variáveis ​​diferentes para entender o que pode influenciar mais na rotatividade. O resultado é um modelo com 81% de acerto que identificou funcionários que trabalham horas extras e novos contratados na função de executivo de vendas com maior risco de desligamento prematuro da empresa. Em algumas abordagens de modelagem é necessário focar mais na interpretabilidade do que no desempenho. Como o objetivo desta pesquisa é mapear e entender os principais fatores de rotatividade, o modelo de árvore de decisão é o ideal. No entanto, o modelo tem um retorno de 27%, o que significa que pode prever cerca de 1/3 dos casos de rotatividade. Este artigo contribui com uma verdadeira aplicação de modelagem para Análise de Pessoas, compartilhando abertamente o desempenho do modelo e discutindo as características relacionadas à rotatividade. As empresas podem adaptar este estudo em seus bancos de dados para rastrear funcionários em grupos de risco de rotatividade.Pontifícia Universidade Católica de São Paulo2022-07-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo avaliado pelos Paresapplication/pdfhttps://revistas.pucsp.br/index.php/redeca/article/view/5857510.23925/2446-9513.2022v9id58575Redeca, Revista Eletrônica do Departamento de Ciências Contábeis & Departamento de Atuária e Métodos Quantitativos; v. 9 (2022); e585752446-9513reponame:Redecainstname:Pontifícia Universidade Católica de São Paulo (PUC-SP)instacron:PUC_SPenghttps://revistas.pucsp.br/index.php/redeca/article/view/58575/40134Copyright (c) 2022 Vinícius Gomes Soares, José de Jesús Pérez Alcázar, Fernando Fagundes Ferreirainfo:eu-repo/semantics/openAccessSoares, Vinícius Gomes Alcázar, José de Jesús Pérez Ferreira, Fernando Fagundes2022-07-07T12:45:02Zoai:ojs.pkp.sfu.ca:article/58575Revistahttps://revistas.pucsp.br/index.php/redecaPRIhttps://revistas.pucsp.br/index.php/redeca/oairedeca@pucsp.br | asamaral@pucsp.br2446-95132446-9513opendoar:2022-07-07T12:45:02Redeca - Pontifícia Universidade Católica de São Paulo (PUC-SP)false
dc.title.none.fl_str_mv Employee turnover intention - Mapping profiles under a decision tree perspective
Intenção de rotatividade de funcionários - Mapeamento de perfis sob uma árvore de decisão
title Employee turnover intention - Mapping profiles under a decision tree perspective
spellingShingle Employee turnover intention - Mapping profiles under a decision tree perspective
Soares, Vinícius Gomes
People Analytics
HR Analytics
Turnover
Decision Trees
Análise de Pessoas
Análise de RH
Rotatividade
Àrvores de Decisão
title_short Employee turnover intention - Mapping profiles under a decision tree perspective
title_full Employee turnover intention - Mapping profiles under a decision tree perspective
title_fullStr Employee turnover intention - Mapping profiles under a decision tree perspective
title_full_unstemmed Employee turnover intention - Mapping profiles under a decision tree perspective
title_sort Employee turnover intention - Mapping profiles under a decision tree perspective
author Soares, Vinícius Gomes
author_facet Soares, Vinícius Gomes
Alcázar, José de Jesús Pérez
Ferreira, Fernando Fagundes
author_role author
author2 Alcázar, José de Jesús Pérez
Ferreira, Fernando Fagundes
author2_role author
author
dc.contributor.author.fl_str_mv Soares, Vinícius Gomes
Alcázar, José de Jesús Pérez
Ferreira, Fernando Fagundes
dc.subject.por.fl_str_mv People Analytics
HR Analytics
Turnover
Decision Trees
Análise de Pessoas
Análise de RH
Rotatividade
Àrvores de Decisão
topic People Analytics
HR Analytics
Turnover
Decision Trees
Análise de Pessoas
Análise de RH
Rotatividade
Àrvores de Decisão
description This work aims to map some profiles having more propensity to quit prematurely a company. The analysis is important because affects the productivity of employees and it represents a high cost for companies around the world. The research applies a decision tree model in a study database of public domain with 1470 records, where it is possible to group profiles under 38 different variables to understand what can influence more the turnover. The result is a model with 81% of accuracy which has identified employees working overtime and new hires in the sales executive position with a higher risk of quitting prematurely the company. In some modeling approaches it is necessary focusing more on interpretability over performance. As the goal of this research is to map and understand key factors of turnover, the decision tree model is ideal. However, the model has a recall of 27%, which means that can predict about 1/3 of turnover cases. This paper contributes with a true modeling application towards People Analytics, sharing openly the model performance and discussing the features related to turnover. Companies can adapt this study in their databases in order to trace employees in turnover risk groups.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-25
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artigo avaliado pelos Pares
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.pucsp.br/index.php/redeca/article/view/58575
10.23925/2446-9513.2022v9id58575
url https://revistas.pucsp.br/index.php/redeca/article/view/58575
identifier_str_mv 10.23925/2446-9513.2022v9id58575
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.pucsp.br/index.php/redeca/article/view/58575/40134
dc.rights.driver.fl_str_mv Copyright (c) 2022 Vinícius Gomes Soares, José de Jesús Pérez Alcázar, Fernando Fagundes Ferreira
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Vinícius Gomes Soares, José de Jesús Pérez Alcázar, Fernando Fagundes Ferreira
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica de São Paulo
publisher.none.fl_str_mv Pontifícia Universidade Católica de São Paulo
dc.source.none.fl_str_mv Redeca, Revista Eletrônica do Departamento de Ciências Contábeis & Departamento de Atuária e Métodos Quantitativos; v. 9 (2022); e58575
2446-9513
reponame:Redeca
instname:Pontifícia Universidade Católica de São Paulo (PUC-SP)
instacron:PUC_SP
instname_str Pontifícia Universidade Católica de São Paulo (PUC-SP)
instacron_str PUC_SP
institution PUC_SP
reponame_str Redeca
collection Redeca
repository.name.fl_str_mv Redeca - Pontifícia Universidade Católica de São Paulo (PUC-SP)
repository.mail.fl_str_mv redeca@pucsp.br | asamaral@pucsp.br
_version_ 1837630727808614400