Employee turnover intention - Mapping profiles under a decision tree perspective
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2022 |
| Outros Autores: | , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Redeca |
| Texto Completo: | https://revistas.pucsp.br/index.php/redeca/article/view/58575 |
Resumo: | This work aims to map some profiles having more propensity to quit prematurely a company. The analysis is important because affects the productivity of employees and it represents a high cost for companies around the world. The research applies a decision tree model in a study database of public domain with 1470 records, where it is possible to group profiles under 38 different variables to understand what can influence more the turnover. The result is a model with 81% of accuracy which has identified employees working overtime and new hires in the sales executive position with a higher risk of quitting prematurely the company. In some modeling approaches it is necessary focusing more on interpretability over performance. As the goal of this research is to map and understand key factors of turnover, the decision tree model is ideal. However, the model has a recall of 27%, which means that can predict about 1/3 of turnover cases. This paper contributes with a true modeling application towards People Analytics, sharing openly the model performance and discussing the features related to turnover. Companies can adapt this study in their databases in order to trace employees in turnover risk groups. |
| id |
PUC_SP-18_c3b4612764d549f0da6518b3ff9da440 |
|---|---|
| oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/58575 |
| network_acronym_str |
PUC_SP-18 |
| network_name_str |
Redeca |
| repository_id_str |
|
| spelling |
Employee turnover intention - Mapping profiles under a decision tree perspectiveIntenção de rotatividade de funcionários - Mapeamento de perfis sob uma árvore de decisãoPeople AnalyticsHR AnalyticsTurnoverDecision TreesAnálise de PessoasAnálise de RHRotatividadeÀrvores de DecisãoThis work aims to map some profiles having more propensity to quit prematurely a company. The analysis is important because affects the productivity of employees and it represents a high cost for companies around the world. The research applies a decision tree model in a study database of public domain with 1470 records, where it is possible to group profiles under 38 different variables to understand what can influence more the turnover. The result is a model with 81% of accuracy which has identified employees working overtime and new hires in the sales executive position with a higher risk of quitting prematurely the company. In some modeling approaches it is necessary focusing more on interpretability over performance. As the goal of this research is to map and understand key factors of turnover, the decision tree model is ideal. However, the model has a recall of 27%, which means that can predict about 1/3 of turnover cases. This paper contributes with a true modeling application towards People Analytics, sharing openly the model performance and discussing the features related to turnover. Companies can adapt this study in their databases in order to trace employees in turnover risk groups.Este trabalho tem como objetivo mapear alguns perfis com maior propensão a sair prematuramente de uma empresa. A análise é importante porque afeta a produtividade dos funcionários e representa um alto custo para empresas em todo o mundo. A pesquisa aplica um modelo de árvore de decisão em um banco de dados de estudo de domínio público com 1470 registros, onde é possível agrupar perfis sob 38 variáveis diferentes para entender o que pode influenciar mais na rotatividade. O resultado é um modelo com 81% de acerto que identificou funcionários que trabalham horas extras e novos contratados na função de executivo de vendas com maior risco de desligamento prematuro da empresa. Em algumas abordagens de modelagem é necessário focar mais na interpretabilidade do que no desempenho. Como o objetivo desta pesquisa é mapear e entender os principais fatores de rotatividade, o modelo de árvore de decisão é o ideal. No entanto, o modelo tem um retorno de 27%, o que significa que pode prever cerca de 1/3 dos casos de rotatividade. Este artigo contribui com uma verdadeira aplicação de modelagem para Análise de Pessoas, compartilhando abertamente o desempenho do modelo e discutindo as características relacionadas à rotatividade. As empresas podem adaptar este estudo em seus bancos de dados para rastrear funcionários em grupos de risco de rotatividade.Pontifícia Universidade Católica de São Paulo2022-07-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo avaliado pelos Paresapplication/pdfhttps://revistas.pucsp.br/index.php/redeca/article/view/5857510.23925/2446-9513.2022v9id58575Redeca, Revista Eletrônica do Departamento de Ciências Contábeis & Departamento de Atuária e Métodos Quantitativos; v. 9 (2022); e585752446-9513reponame:Redecainstname:Pontifícia Universidade Católica de São Paulo (PUC-SP)instacron:PUC_SPenghttps://revistas.pucsp.br/index.php/redeca/article/view/58575/40134Copyright (c) 2022 Vinícius Gomes Soares, José de Jesús Pérez Alcázar, Fernando Fagundes Ferreirainfo:eu-repo/semantics/openAccessSoares, Vinícius Gomes Alcázar, José de Jesús Pérez Ferreira, Fernando Fagundes2022-07-07T12:45:02Zoai:ojs.pkp.sfu.ca:article/58575Revistahttps://revistas.pucsp.br/index.php/redecaPRIhttps://revistas.pucsp.br/index.php/redeca/oairedeca@pucsp.br | asamaral@pucsp.br2446-95132446-9513opendoar:2022-07-07T12:45:02Redeca - Pontifícia Universidade Católica de São Paulo (PUC-SP)false |
| dc.title.none.fl_str_mv |
Employee turnover intention - Mapping profiles under a decision tree perspective Intenção de rotatividade de funcionários - Mapeamento de perfis sob uma árvore de decisão |
| title |
Employee turnover intention - Mapping profiles under a decision tree perspective |
| spellingShingle |
Employee turnover intention - Mapping profiles under a decision tree perspective Soares, Vinícius Gomes People Analytics HR Analytics Turnover Decision Trees Análise de Pessoas Análise de RH Rotatividade Àrvores de Decisão |
| title_short |
Employee turnover intention - Mapping profiles under a decision tree perspective |
| title_full |
Employee turnover intention - Mapping profiles under a decision tree perspective |
| title_fullStr |
Employee turnover intention - Mapping profiles under a decision tree perspective |
| title_full_unstemmed |
Employee turnover intention - Mapping profiles under a decision tree perspective |
| title_sort |
Employee turnover intention - Mapping profiles under a decision tree perspective |
| author |
Soares, Vinícius Gomes |
| author_facet |
Soares, Vinícius Gomes Alcázar, José de Jesús Pérez Ferreira, Fernando Fagundes |
| author_role |
author |
| author2 |
Alcázar, José de Jesús Pérez Ferreira, Fernando Fagundes |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Soares, Vinícius Gomes Alcázar, José de Jesús Pérez Ferreira, Fernando Fagundes |
| dc.subject.por.fl_str_mv |
People Analytics HR Analytics Turnover Decision Trees Análise de Pessoas Análise de RH Rotatividade Àrvores de Decisão |
| topic |
People Analytics HR Analytics Turnover Decision Trees Análise de Pessoas Análise de RH Rotatividade Àrvores de Decisão |
| description |
This work aims to map some profiles having more propensity to quit prematurely a company. The analysis is important because affects the productivity of employees and it represents a high cost for companies around the world. The research applies a decision tree model in a study database of public domain with 1470 records, where it is possible to group profiles under 38 different variables to understand what can influence more the turnover. The result is a model with 81% of accuracy which has identified employees working overtime and new hires in the sales executive position with a higher risk of quitting prematurely the company. In some modeling approaches it is necessary focusing more on interpretability over performance. As the goal of this research is to map and understand key factors of turnover, the decision tree model is ideal. However, the model has a recall of 27%, which means that can predict about 1/3 of turnover cases. This paper contributes with a true modeling application towards People Analytics, sharing openly the model performance and discussing the features related to turnover. Companies can adapt this study in their databases in order to trace employees in turnover risk groups. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-07-25 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artigo avaliado pelos Pares |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://revistas.pucsp.br/index.php/redeca/article/view/58575 10.23925/2446-9513.2022v9id58575 |
| url |
https://revistas.pucsp.br/index.php/redeca/article/view/58575 |
| identifier_str_mv |
10.23925/2446-9513.2022v9id58575 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://revistas.pucsp.br/index.php/redeca/article/view/58575/40134 |
| dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Vinícius Gomes Soares, José de Jesús Pérez Alcázar, Fernando Fagundes Ferreira info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Copyright (c) 2022 Vinícius Gomes Soares, José de Jesús Pérez Alcázar, Fernando Fagundes Ferreira |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica de São Paulo |
| publisher.none.fl_str_mv |
Pontifícia Universidade Católica de São Paulo |
| dc.source.none.fl_str_mv |
Redeca, Revista Eletrônica do Departamento de Ciências Contábeis & Departamento de Atuária e Métodos Quantitativos; v. 9 (2022); e58575 2446-9513 reponame:Redeca instname:Pontifícia Universidade Católica de São Paulo (PUC-SP) instacron:PUC_SP |
| instname_str |
Pontifícia Universidade Católica de São Paulo (PUC-SP) |
| instacron_str |
PUC_SP |
| institution |
PUC_SP |
| reponame_str |
Redeca |
| collection |
Redeca |
| repository.name.fl_str_mv |
Redeca - Pontifícia Universidade Católica de São Paulo (PUC-SP) |
| repository.mail.fl_str_mv |
redeca@pucsp.br | asamaral@pucsp.br |
| _version_ |
1837630727808614400 |