[pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO
Main Author: | |
---|---|
Publication Date: | 2005 |
Format: | Doctoral thesis |
Language: | por |
Source: | Repositório Institucional da PUC-RIO (Projeto Maxwell) |
Download full: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7486&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7486&idi=2 http://doi.org/10.17771/PUCRio.acad.7486 |
Summary: | [pt] Este trabalho estuda o problema de compressão de imagens de sensoriamento remoto segundo a ótica da codificação conjunta fonte-canal. É analisado o desempenho de métodos baseados em quantização vetorial segundo o algoritmo LBG, principalmente o COVQ (Channel Optimized Vector Quantizer) bem como a quantização vetorial estruturada em árvore. Dentro desse contexto, são propostos 2 novos métodos para a resolução do problema: (1)Uma quantização vetorial estruturada em árvores que leva em conta a transmissão através de canais ruidosos, solução denominada COTSVQ (Channel-Design Tree Strutured Vecotr Quantizer), bem como (2) uma classe de métodos que se utiliza de códigos corretores de erro sobre a estrutura progressiva do TSVQ, de forma a proteger os dados de forma ativa durante a transmissão. Os dois métodos propostos podem ser combinados no mesmo compressor, de forma a originar uma classe ampla de compressores adaptados à transmissão por canais com ruído. São apresentados resultados que comparam os desempenhos dos métodos propostos com aqueles já existentes para uma análise de desempenho, na situação de transmissão via satélite de imagens captadas e comprimidas para uma taxa de 1,5bpp. Os resultados mostram que os métodos propostos são muito menos complexos que os já existentes, porém conseguindo atingir uma qualidade de imagem equivalente, ou, em alguns casos, superior. |
id |
PUC_RIO-1_f73bde37deef5845be0c9f608dbb94a9 |
---|---|
oai_identifier_str |
oai:MAXWELL.puc-rio.br:7486 |
network_acronym_str |
PUC_RIO-1 |
network_name_str |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
repository_id_str |
534 |
spelling |
[pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO [en] JOINT SOURCE-CHANNEL CODING USING TREE-STRCTURED VECTOR QUANTIZATION FOR REMOTE SENSING IMAGES [pt] QUANTIZACAO VETORIAL[pt] CODIFICACAO CONJUNTA PARA FONTE E CANAL[pt] COMPRESSAO DE IMAGENS[en] VECTOR QUANTISATION[en] JOINT SOURCE-CHANNEL CODING[en] IMAGE COMPRESSION[pt] Este trabalho estuda o problema de compressão de imagens de sensoriamento remoto segundo a ótica da codificação conjunta fonte-canal. É analisado o desempenho de métodos baseados em quantização vetorial segundo o algoritmo LBG, principalmente o COVQ (Channel Optimized Vector Quantizer) bem como a quantização vetorial estruturada em árvore. Dentro desse contexto, são propostos 2 novos métodos para a resolução do problema: (1)Uma quantização vetorial estruturada em árvores que leva em conta a transmissão através de canais ruidosos, solução denominada COTSVQ (Channel-Design Tree Strutured Vecotr Quantizer), bem como (2) uma classe de métodos que se utiliza de códigos corretores de erro sobre a estrutura progressiva do TSVQ, de forma a proteger os dados de forma ativa durante a transmissão. Os dois métodos propostos podem ser combinados no mesmo compressor, de forma a originar uma classe ampla de compressores adaptados à transmissão por canais com ruído. São apresentados resultados que comparam os desempenhos dos métodos propostos com aqueles já existentes para uma análise de desempenho, na situação de transmissão via satélite de imagens captadas e comprimidas para uma taxa de 1,5bpp. Os resultados mostram que os métodos propostos são muito menos complexos que os já existentes, porém conseguindo atingir uma qualidade de imagem equivalente, ou, em alguns casos, superior.[en] This work studies the problem of remote sensorng image compression by joint source-channel coding. The vector quantizer methods evaluated are those designed with the LBG algorithm, the COVQ (channel-optimized vector quantizer) algorithm as well as tree-structured vector quantizer. The noisy channel is modelled as a BSC. In this context, two news methods are proposed: (1) A tree- structures vector quantizer that considers the transmission through noisy channels (denominated CD-TSVQ), and (2) a new class of compressors that uses forward error- correcting codes over the TSVQ structure, as a way to actively protect data during the transmission. The twoproposed methods can be combined on the same compressor architecture, resulting in a vast class of compressors well-adapted to the transmission through noisy channels. Results allowing the comparision of the proposed methods with existing ones are presented. Performance evaluated in a scenery where images are compressed to be transmited at a rate of 1.5bpp. Results yield to the conclusion that the porposed methods are much less complex than the existing methods, yet achieve equivalent or, in some situations, improved performance.MAXWELLWEILER ALVES FINAMOREWEILER ALVES FINAMORERAFAEL DONNICI DE AZEVEDO2005-11-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7486&idi=1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7486&idi=2http://doi.org/10.17771/PUCRio.acad.7486porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2022-08-25T00:00:00Zoai:MAXWELL.puc-rio.br:7486Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342022-08-25T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false |
dc.title.none.fl_str_mv |
[pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO [en] JOINT SOURCE-CHANNEL CODING USING TREE-STRCTURED VECTOR QUANTIZATION FOR REMOTE SENSING IMAGES |
title |
[pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO |
spellingShingle |
[pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO RAFAEL DONNICI DE AZEVEDO [pt] QUANTIZACAO VETORIAL [pt] CODIFICACAO CONJUNTA PARA FONTE E CANAL [pt] COMPRESSAO DE IMAGENS [en] VECTOR QUANTISATION [en] JOINT SOURCE-CHANNEL CODING [en] IMAGE COMPRESSION |
title_short |
[pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO |
title_full |
[pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO |
title_fullStr |
[pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO |
title_full_unstemmed |
[pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO |
title_sort |
[pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO |
author |
RAFAEL DONNICI DE AZEVEDO |
author_facet |
RAFAEL DONNICI DE AZEVEDO |
author_role |
author |
dc.contributor.none.fl_str_mv |
WEILER ALVES FINAMORE WEILER ALVES FINAMORE |
dc.contributor.author.fl_str_mv |
RAFAEL DONNICI DE AZEVEDO |
dc.subject.por.fl_str_mv |
[pt] QUANTIZACAO VETORIAL [pt] CODIFICACAO CONJUNTA PARA FONTE E CANAL [pt] COMPRESSAO DE IMAGENS [en] VECTOR QUANTISATION [en] JOINT SOURCE-CHANNEL CODING [en] IMAGE COMPRESSION |
topic |
[pt] QUANTIZACAO VETORIAL [pt] CODIFICACAO CONJUNTA PARA FONTE E CANAL [pt] COMPRESSAO DE IMAGENS [en] VECTOR QUANTISATION [en] JOINT SOURCE-CHANNEL CODING [en] IMAGE COMPRESSION |
description |
[pt] Este trabalho estuda o problema de compressão de imagens de sensoriamento remoto segundo a ótica da codificação conjunta fonte-canal. É analisado o desempenho de métodos baseados em quantização vetorial segundo o algoritmo LBG, principalmente o COVQ (Channel Optimized Vector Quantizer) bem como a quantização vetorial estruturada em árvore. Dentro desse contexto, são propostos 2 novos métodos para a resolução do problema: (1)Uma quantização vetorial estruturada em árvores que leva em conta a transmissão através de canais ruidosos, solução denominada COTSVQ (Channel-Design Tree Strutured Vecotr Quantizer), bem como (2) uma classe de métodos que se utiliza de códigos corretores de erro sobre a estrutura progressiva do TSVQ, de forma a proteger os dados de forma ativa durante a transmissão. Os dois métodos propostos podem ser combinados no mesmo compressor, de forma a originar uma classe ampla de compressores adaptados à transmissão por canais com ruído. São apresentados resultados que comparam os desempenhos dos métodos propostos com aqueles já existentes para uma análise de desempenho, na situação de transmissão via satélite de imagens captadas e comprimidas para uma taxa de 1,5bpp. Os resultados mostram que os métodos propostos são muito menos complexos que os já existentes, porém conseguindo atingir uma qualidade de imagem equivalente, ou, em alguns casos, superior. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-11-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7486&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7486&idi=2 http://doi.org/10.17771/PUCRio.acad.7486 |
url |
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7486&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7486&idi=2 http://doi.org/10.17771/PUCRio.acad.7486 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
MAXWELL |
publisher.none.fl_str_mv |
MAXWELL |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell) instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) instacron:PUC_RIO |
instname_str |
Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) |
instacron_str |
PUC_RIO |
institution |
PUC_RIO |
reponame_str |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
collection |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
repository.name.fl_str_mv |
Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) |
repository.mail.fl_str_mv |
|
_version_ |
1840643323582218240 |