[pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO

Bibliographic Details
Main Author: RAFAEL DONNICI DE AZEVEDO
Publication Date: 2005
Format: Doctoral thesis
Language: por
Source: Repositório Institucional da PUC-RIO (Projeto Maxwell)
Download full: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7486&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7486&idi=2
http://doi.org/10.17771/PUCRio.acad.7486
Summary: [pt] Este trabalho estuda o problema de compressão de imagens de sensoriamento remoto segundo a ótica da codificação conjunta fonte-canal. É analisado o desempenho de métodos baseados em quantização vetorial segundo o algoritmo LBG, principalmente o COVQ (Channel Optimized Vector Quantizer) bem como a quantização vetorial estruturada em árvore. Dentro desse contexto, são propostos 2 novos métodos para a resolução do problema: (1)Uma quantização vetorial estruturada em árvores que leva em conta a transmissão através de canais ruidosos, solução denominada COTSVQ (Channel-Design Tree Strutured Vecotr Quantizer), bem como (2) uma classe de métodos que se utiliza de códigos corretores de erro sobre a estrutura progressiva do TSVQ, de forma a proteger os dados de forma ativa durante a transmissão. Os dois métodos propostos podem ser combinados no mesmo compressor, de forma a originar uma classe ampla de compressores adaptados à transmissão por canais com ruído. São apresentados resultados que comparam os desempenhos dos métodos propostos com aqueles já existentes para uma análise de desempenho, na situação de transmissão via satélite de imagens captadas e comprimidas para uma taxa de 1,5bpp. Os resultados mostram que os métodos propostos são muito menos complexos que os já existentes, porém conseguindo atingir uma qualidade de imagem equivalente, ou, em alguns casos, superior.
id PUC_RIO-1_f73bde37deef5845be0c9f608dbb94a9
oai_identifier_str oai:MAXWELL.puc-rio.br:7486
network_acronym_str PUC_RIO-1
network_name_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository_id_str 534
spelling [pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO [en] JOINT SOURCE-CHANNEL CODING USING TREE-STRCTURED VECTOR QUANTIZATION FOR REMOTE SENSING IMAGES [pt] QUANTIZACAO VETORIAL[pt] CODIFICACAO CONJUNTA PARA FONTE E CANAL[pt] COMPRESSAO DE IMAGENS[en] VECTOR QUANTISATION[en] JOINT SOURCE-CHANNEL CODING[en] IMAGE COMPRESSION[pt] Este trabalho estuda o problema de compressão de imagens de sensoriamento remoto segundo a ótica da codificação conjunta fonte-canal. É analisado o desempenho de métodos baseados em quantização vetorial segundo o algoritmo LBG, principalmente o COVQ (Channel Optimized Vector Quantizer) bem como a quantização vetorial estruturada em árvore. Dentro desse contexto, são propostos 2 novos métodos para a resolução do problema: (1)Uma quantização vetorial estruturada em árvores que leva em conta a transmissão através de canais ruidosos, solução denominada COTSVQ (Channel-Design Tree Strutured Vecotr Quantizer), bem como (2) uma classe de métodos que se utiliza de códigos corretores de erro sobre a estrutura progressiva do TSVQ, de forma a proteger os dados de forma ativa durante a transmissão. Os dois métodos propostos podem ser combinados no mesmo compressor, de forma a originar uma classe ampla de compressores adaptados à transmissão por canais com ruído. São apresentados resultados que comparam os desempenhos dos métodos propostos com aqueles já existentes para uma análise de desempenho, na situação de transmissão via satélite de imagens captadas e comprimidas para uma taxa de 1,5bpp. Os resultados mostram que os métodos propostos são muito menos complexos que os já existentes, porém conseguindo atingir uma qualidade de imagem equivalente, ou, em alguns casos, superior.[en] This work studies the problem of remote sensorng image compression by joint source-channel coding. The vector quantizer methods evaluated are those designed with the LBG algorithm, the COVQ (channel-optimized vector quantizer) algorithm as well as tree-structured vector quantizer. The noisy channel is modelled as a BSC. In this context, two news methods are proposed: (1) A tree- structures vector quantizer that considers the transmission through noisy channels (denominated CD-TSVQ), and (2) a new class of compressors that uses forward error- correcting codes over the TSVQ structure, as a way to actively protect data during the transmission. The twoproposed methods can be combined on the same compressor architecture, resulting in a vast class of compressors well-adapted to the transmission through noisy channels. Results allowing the comparision of the proposed methods with existing ones are presented. Performance evaluated in a scenery where images are compressed to be transmited at a rate of 1.5bpp. Results yield to the conclusion that the porposed methods are much less complex than the existing methods, yet achieve equivalent or, in some situations, improved performance.MAXWELLWEILER ALVES FINAMOREWEILER ALVES FINAMORERAFAEL DONNICI DE AZEVEDO2005-11-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7486&idi=1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7486&idi=2http://doi.org/10.17771/PUCRio.acad.7486porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2022-08-25T00:00:00Zoai:MAXWELL.puc-rio.br:7486Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342022-08-25T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false
dc.title.none.fl_str_mv [pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO
[en] JOINT SOURCE-CHANNEL CODING USING TREE-STRCTURED VECTOR QUANTIZATION FOR REMOTE SENSING IMAGES
title [pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO
spellingShingle [pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO
RAFAEL DONNICI DE AZEVEDO
[pt] QUANTIZACAO VETORIAL
[pt] CODIFICACAO CONJUNTA PARA FONTE E CANAL
[pt] COMPRESSAO DE IMAGENS
[en] VECTOR QUANTISATION
[en] JOINT SOURCE-CHANNEL CODING
[en] IMAGE COMPRESSION
title_short [pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO
title_full [pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO
title_fullStr [pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO
title_full_unstemmed [pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO
title_sort [pt] CODIFICAÇÃO CONJUNTA, PARA FONTE E CANAL, USANDO QUANTIZAÇÃO VETORIAL ESTRUTURADA EM ÁRVORE, PARA IMAGENS DE SENSORIAMENTO REMOTO
author RAFAEL DONNICI DE AZEVEDO
author_facet RAFAEL DONNICI DE AZEVEDO
author_role author
dc.contributor.none.fl_str_mv WEILER ALVES FINAMORE
WEILER ALVES FINAMORE
dc.contributor.author.fl_str_mv RAFAEL DONNICI DE AZEVEDO
dc.subject.por.fl_str_mv [pt] QUANTIZACAO VETORIAL
[pt] CODIFICACAO CONJUNTA PARA FONTE E CANAL
[pt] COMPRESSAO DE IMAGENS
[en] VECTOR QUANTISATION
[en] JOINT SOURCE-CHANNEL CODING
[en] IMAGE COMPRESSION
topic [pt] QUANTIZACAO VETORIAL
[pt] CODIFICACAO CONJUNTA PARA FONTE E CANAL
[pt] COMPRESSAO DE IMAGENS
[en] VECTOR QUANTISATION
[en] JOINT SOURCE-CHANNEL CODING
[en] IMAGE COMPRESSION
description [pt] Este trabalho estuda o problema de compressão de imagens de sensoriamento remoto segundo a ótica da codificação conjunta fonte-canal. É analisado o desempenho de métodos baseados em quantização vetorial segundo o algoritmo LBG, principalmente o COVQ (Channel Optimized Vector Quantizer) bem como a quantização vetorial estruturada em árvore. Dentro desse contexto, são propostos 2 novos métodos para a resolução do problema: (1)Uma quantização vetorial estruturada em árvores que leva em conta a transmissão através de canais ruidosos, solução denominada COTSVQ (Channel-Design Tree Strutured Vecotr Quantizer), bem como (2) uma classe de métodos que se utiliza de códigos corretores de erro sobre a estrutura progressiva do TSVQ, de forma a proteger os dados de forma ativa durante a transmissão. Os dois métodos propostos podem ser combinados no mesmo compressor, de forma a originar uma classe ampla de compressores adaptados à transmissão por canais com ruído. São apresentados resultados que comparam os desempenhos dos métodos propostos com aqueles já existentes para uma análise de desempenho, na situação de transmissão via satélite de imagens captadas e comprimidas para uma taxa de 1,5bpp. Os resultados mostram que os métodos propostos são muito menos complexos que os já existentes, porém conseguindo atingir uma qualidade de imagem equivalente, ou, em alguns casos, superior.
publishDate 2005
dc.date.none.fl_str_mv 2005-11-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7486&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7486&idi=2
http://doi.org/10.17771/PUCRio.acad.7486
url https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7486&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7486&idi=2
http://doi.org/10.17771/PUCRio.acad.7486
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MAXWELL
publisher.none.fl_str_mv MAXWELL
dc.source.none.fl_str_mv reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)
instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron:PUC_RIO
instname_str Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron_str PUC_RIO
institution PUC_RIO
reponame_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
collection Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository.name.fl_str_mv Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
repository.mail.fl_str_mv
_version_ 1840643323582218240